
M2S1 : EXERCISES 3 : SOLUTIONS

1. Clearly FX is continuous, and if c = 1,

lim
x−→−∞

FX(x) = 0 lim
x−→∞

FX(x) = 1

so FX is a cdf.. To find the pdf, differentiate FX ;

fX(x) =
d

dt
{FX(t)}t=x =

d

dt

{
exp

{
−e−λt

}}

t=x
= λ exp

{
−λx− e−λx

}
x ∈ R.

If fX(x) = cg(x) is a pdf, then the corresponding cdf FX is defined by

FX(x) =

∫ x

−∞

fX(t) dt =






∫ x

−∞

− ct

(1 + t2)2
dt

∫ 0

−∞

− ct

(1 + t2)2
dt+

∫ x

0

ct

(1 + t2)2
dt

=






[
c

2

1

1 + t2

]x

−∞

x ≤ 0

c

2
+

[
− c

2

1

1 + t2

]x

0

x > 0

=






c

2(1 + x2)
x ≤ 0

c(1 + 2x2)

2(1 + x2)
x > 0

and hence c = 1, as we must have lim
x−→∞

FX(x) = 1

EfX [ X ] = 0 as fX is symmetric about 0, and the expectation integral is finite. We know that
∫
∞

−∞

xfX(x) dx =

∫ 0

−∞

−x2
(1 + x2)2

dx+

∫
∞

0

x2

(1 + x2)2
dx = 0

as the integrands in these integrals behave like 1/x2 as x becomes large, and hence the integrals are
finite, and cancel as they are equal and opposite in sign.

2.

EfX [ X ] =

∫
∞

0
xfX(x) dx =

∫
∞

0

{∫ x

0
dy

}
fX(x) dx =

∫
∞

0

{∫
∞

y
fX(x) dx

}
dy

=

∫
∞

0

(1− FX(y)) dy ≡
∫
∞

0

(1− FX(x)) dx

EfX [ X
r ] =

∫
∞

0

xrfX(x) dx =

∫
∞

0

{∫ x

0

ryr−1 dy

}
fX(x) dx =

∫
∞

0

{∫
∞

y

fX(x) dx

}
ryr−1 dy

=

∫
∞

0
(1− FX(y))ry

r−1 dy ≡
∫
∞

0
rxr−1(1− FX(x)) dx

Note: the exchange of order of integration is valid if we know that the expectation integral is finite.
This regarded as a standard result for random variables taking only non-negative values, and also holds
in the discrete case with integrals replaced by summations. The important thing is to remember the
trick of introducing a second integral involving dummy variable y. The rest of the result follows after
careful manipulation of the double integral.
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Now, for a random variable that takes values on R, we split the integral into two at the origin and
proceed as above, as follows.

EfX [ X
r ] =

∫
∞

−∞

xrfX(x) dx =

∫ 0

−∞

xrfX(x) dx+

∫
∞

0

xrfX(x) dx

=

∫ 0

−∞

{∫ x

0
ryr−1 dy

}
fX(x) dx+

∫
∞

0
rxr−1(1− FX(x)) dx

=

∫ 0

−∞

{
−
∫ 0

x

ryr−1 dy

}
fX(x) dx+

∫
∞

0

(1− FX(y))ry
r−1 dy

= −
∫ 0

−∞

ryr−1
{∫ y

−∞

fX(x) dx

}
dy +

∫
∞

0
(1− FX(y))ry

r−1 dy

= −
∫ 0

−∞

ryr−1FX(y) dy +

∫
∞

0

(1− FX(y))ry
r−1 dy

3. We have that

Ef2 [ X
r
2 ] =

∫
∞

0
xrf2(x) dx =

∫
∞

0
xr [1 + sin(2π logx)] f1(x) dx

=

∫
∞

0
xrf1(x) dx+

∫
∞

0
xr sin(2π logx)f1(x) dx

= Ef1 [ X
r
1 ] +

∫
∞

0

xr sin(2π log x)cx−1 exp

{
−(logx)2

2

}
dx

= Ef1 [ X
r
1 ] + c

∫
∞

−∞

ert sin(2πt) exp

{
− t2

2

}
dt (putting t = logx)

= Ef1 [ X
r
1 ] + c exp

{
r2/2

}∫ ∞

−∞

sin(2πt) exp

{
−(t− r)2

2

}
dt (completing the square in t))

= Ef1 [ X
r
1 ] + c exp

{
r2/2

}∫ ∞

−∞

sin(2π(s+ r)) exp

{
−s2

2

}
ds (putting s = t− r)

= Ef1 [ X
r
1 ] + c exp

{
r2/2

}∫ ∞

−∞

sin(2πs) exp

{
−s2

2

}
ds = Ef1 [ X

r
1 ]

as sin(2π(s+ r)) = sin(2πs) for r = 1, 2, ..., as the integrand is an integrable, odd function about zero.

The result follows after showing that the second integral is zero; it may not be obvious when you start
the manipulation, but the t = log x substitution seems a natural first step - this has two advantages;
first it gets rid of the awkward log terms and secondly it changes the range of integration to the whole
real line leaving an integrand that looks more familiar and tractable. The next step of completing the
square takes a little spotting, but also seems sensible to combine the exp terms. The remainder of
the calculation is similar to the the Cauchy example from the lectures; here the integral is zero as the
integrand is an integrable odd function.
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4. (i) By integration, for x ≥ 0,

FX(x) =

∫ x

−∞

fX(t) dt =

∫ x

0

α2t exp {−αt} dt = [−αt exp{−αt}]x0 +
∫ x

0

α exp {−αt} dt

= −αx exp {−αx}+ [− exp {−αt}]x0 = 1− (1 + αx) exp {−αx}
Hence P[ X ≥ m ] = 1− P[ X < m ] = 1− FX(m) = (1 + αm) exp {−αm}

(ii)

EfX [ X ] =

∫
∞

−∞

xfX(x) dx =

∞∫

0

xα2x exp {−αx} dx =
[
−αx2 exp{−αx}

]∞
0

+

∞∫

0

2xα exp{−αx} dx

= 0 +
2

α

∞∫

0

xα2 exp{−αx} dx =
2

α

as the integrand is a pdf. Hence a change in the expectation to 2/β corresponds to a change from α to
β in the pdf and cdf. Hence P[ X ≥ m ] changes to (1 + βm) exp{−βm}.

5. The cdf of X, FX is given by

FX(x) =

∫ x

−∞

fX(t) dt =

∫ x

0
4t3 dt = x4 0 < x < 1.

(a) Y = X4, so Y = (0, 1), and from first principles, for y ∈ Y,

FY (y) = P[ Y ≤ y ] = P[ X4 ≤ y ] = P[ X ≤ y1/4 ] = FX(y
1/4) = y =⇒ fY (y) = 1 0 < y < 1

(b) W = eX , so W = (1, e), and from first principles, for w ∈W,

FW (w) = P[ W ≤ w ] = P[ eX ≤ w ] = P[ X ≤ logw ] = FX(logw) = (logw)4

=⇒ fW (w) =
4(logw)3

w
1 < w < e

(c) Z = logX, so Z = (−∞, 1), and from first principles, for z ∈ Z,

FZ(z) = P[ Z ≤ z ] = P[ logX ≤ z ] = P[ X ≤ ez ] = FX(e
z) = e4z =⇒ fZ(z) = 4e4z −∞ < z < 1

(d) U = (X − 0.5)2, so U = (0, 0.25), and from first principles, for u ∈ U,
FU(u) = P[ U ≤ u ] = P[ (X − 0.5)2 ≤ u ] = P[ −√u+ 0.5 ≤ X ≤ √u+ 0.5 ]

= FX(
√
u+ 0.5)− FX(−

√
u+ 0.5) = (0.5 +

√
u)4 − (0.5−√u)4

=⇒ fU(u) =
2√
u

[
(0.5 +

√
u)3 + (0.5−

√
u)3
]
=

1 + 12u

2
√
u

− 0 < u < 0.25

To find the decreasing function H on (0, 1); need FV (v) = v, 0 < v < 1, that is, need

P[ V ≤ v ] = P[ H(X) ≤ v ] = v =⇒ P[ X ≥ H−1(v) ] = v =⇒ 1−P[ X < H−1(v) ] = v

=⇒
{
H−1(v)

}4
= 1− v and hence H(v) = 1− v4
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6. We have fR(r) = 6r(1− r), for 0 < r < 1, and hence

FR(r) = r2(3− 2r) 0 < r < 1

Circumference: Y = 2πR, so Y = (0, 2π), and from first principles, for y ∈ Y,

FY (y) = P[ Y ≤ y ] = P[ 2πR ≤ y ] = P[ R ≤ y/2π ] = FR(y/2π) =
3y2

4π2
− 2y3

8π3

=⇒ fY (y) =
6y

8π3
(2π − y) 0 < y < 2π

Area: Z = πR2, so Z = (0, π), and from first principles, for z ∈ Z, recalling that fR is only positive
when 0 < z < π,

FZ(z) = P[ Z ≤ z ] = P[ πR2 ≤ z ] = P[ R ≤
√

z/π ] = FR(z/2π) =
3z

π
− 2

{ z

π

}3/2

=⇒ fZ(z) = 3π−3/2(
√
π −√z) 0 < z < π.

7. By integration

FX(x) =

∫ x

−∞

fX(t) dt =

∫ x

0

α

β

(
β

β + t

)α+1
dt =

[
−
(

β

β + t

)α ]x

0

= 1−
(
1 +

x

β

)
−α

x > 0.

If Y = logX, then Y = R, and

FY (y) = P[ Y ≤ y ] = P[ logX ≤ y ] = P[ X ≤ ey ] = FX(e
y) = 1−

(
1 +

ey

β

)
−α

=⇒ fY (y) =
α

β
ey
(

β

β + ey

)α+1
y ∈ R

If Z = ξ + θY , then Y = (Z − ξ)/θ, so the density of Z can be found easily using transformation
techniques

fZ(z) =
α

β
e(z−ξ)/θ

(
β

β + e(z−ξ)/θ

)α+1 1
θ

z ∈ R
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