M2S1 : ASSESSED COURSEWORK 3 : SOLUTIONS

1. (a) Using the results given in lectures:If

$$
Y=A X \quad \text { where } \quad A=\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & 2 & -1 \\
0 & 0 & 4
\end{array}\right)
$$

and $X \sim N\left(\mathbf{0}, I_{3}\right)$, where $\mathbf{0}$ is the zero vector, and I_{3} is the 3×3 identity matrix, then

$$
Y \sim N\left(A \mathbf{0}, A I_{3} A^{T}\right) \equiv N(\mathbf{0}, \Sigma)
$$

where

$$
\Sigma=A A^{T}=\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & 2 & -1 \\
0 & 0 & 4
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 2 & 0 \\
1 & -1 & 4
\end{array}\right)=\left(\begin{array}{rrr}
2 & -1 & 4 \\
-1 & 5 & -4 \\
4 & -4 & 16
\end{array}\right)
$$

[4 MARKS]
(b) The covariance between Y_{1} and Y_{3} is given by Σ_{13}, that is, $\operatorname{Cov}_{f_{Y_{1}, Y_{3}}}\left[Y_{1}, Y_{3}\right]=4$.
[4 MARKS]
(c) By the transformation result from (a), the marginal distribution of Y_{1} is obtained by the result

$$
Y_{1}=B Y \sim N\left(B \mathbf{0}, B \Sigma B^{T}\right)
$$

where $B \Sigma B^{T}=\Sigma_{11}=2$ and hence

$$
Y_{1} \sim N(0,2)
$$

(can deduce this directly, using MGFs, and the definition of $Y_{1}=X_{1}+X_{3}$).
[2 MARKS]
(d) We have for the mgf for X, by using the mgf of the standard normal $\exp \left\{t^{2} / 2\right\}$

$$
\begin{aligned}
M_{X}(\mathbf{t}) & =E_{f_{X}}\left[\exp \left\{\mathbf{t}^{T} X\right\}\right]=E_{f_{X}}\left[\exp \left\{t_{1} X_{1}+t_{2} X_{2}+t_{3} X_{3}\right\}\right]=\prod_{i=1}^{3} \exp \left\{t_{i} X_{i}\right\} \\
& =\prod_{i=1}^{3} M_{X_{i}}\left(t_{i}\right)=\exp \left\{\frac{t_{1}^{2}}{2}\right\} \exp \left\{\frac{t_{2}^{2}}{2}\right\} \exp \left\{\frac{t_{3}^{2}}{2}\right\}=\exp \left\{\frac{\mathbf{t}^{T} \mathbf{t}}{2}\right\} \\
M_{Y}(\mathbf{t}) & =E_{f_{Y}}\left[\exp \left\{\mathbf{t}^{T} Y\right\}\right]=E_{f_{X}}\left[\exp \left\{\mathbf{t}^{T}(A X)\right\}\right] \\
& =E_{f_{X}}\left[\exp \left\{\mathbf{t}^{T}\left(A^{T}\right)^{T} X\right\}\right]=E_{f_{X}}\left[\exp \left\{\left(A^{T} \mathbf{t}\right)^{T} X\right\}\right] \\
& =M_{X}\left(\left(A^{T} \mathbf{t}\right)\right)=\exp \left\{\frac{\left(A^{T} \mathbf{t}\right)^{T}\left(A^{T} \mathbf{t}\right)}{2}\right\}=\exp \left\{\frac{\mathbf{t}^{T}\left(A A^{T}\right) \mathbf{t}}{2}\right\}=\exp \left\{\frac{\mathbf{t}^{T} \Sigma \mathbf{t}}{2}\right\}
\end{aligned}
$$

(e) We have

$$
\begin{aligned}
V & =Y^{T} \Sigma^{-1} Y=(A X)^{T}\left(A A^{T}\right)^{-1} A X=X^{T} A^{T}\left(A^{T}\right)^{-1} A^{-1} A X=X^{T}\left(A^{T}\left(A^{T}\right)^{-1}\right)\left(A^{-1} A\right) X \\
& =X^{T} X=X_{1}^{2}+X_{2}^{2}+X_{3}^{2} .
\end{aligned}
$$

Now, X_{1}, X_{2} and X_{3} are all $\operatorname{Normal}(0,1)$, and thus for $i=1,2,3$, from lecture notes

$$
V_{i}=X_{i}^{2} \sim \chi_{1}^{2} \equiv \operatorname{Gamma}\left(\frac{1}{2}, \frac{1}{2}\right) \quad \therefore \quad V=\sum_{i=1}^{3} V_{i} \sim \operatorname{Gamma}\left(\frac{3}{2}, \frac{1}{2}\right) \equiv \chi_{3}^{2}
$$

using mgfs, or the result for the addition of independent Gamma random variables with the same β parameter.
[5 MARKS]
2. (a) We have for $y>0$

$$
F_{Y_{n}}(y)=\left\{F_{X}(y)\right\}^{n}=\left\{\frac{(y+1)^{2}-1}{(y+1)^{2}}\right\}^{n}=\left\{1-\frac{1}{(y+1)^{2}}\right\}^{n}
$$

with $F_{Y_{n}}(y)=0$ for $y \leq 0$.
(i) For any (fixed) $y>0,0<(y+1)^{-2}<1$, and hence

$$
\left\{1-\frac{1}{(y+1)^{2}}\right\}^{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty \quad \therefore F_{Y_{n}}(y) \rightarrow F(y)=0
$$

for all $y \in \mathbb{R}$, which is not a probability distribution function, so the limiting distribution does not exist.
[5 MARKS]
(ii) For the transformed variable $Z_{n}=Y_{n} / \sqrt{n}$, for $z>0$,

$$
F_{Z_{n}}(z)=P\left[Z_{n} \leq z\right]=P\left[Y_{n} / \sqrt{n} \leq z\right]=P\left[Y_{n} \leq \sqrt{n} z\right]=F_{Y_{n}}(\sqrt{n} z) .
$$

$\therefore F_{Z_{n}}(z)=\left\{1-\frac{1}{(\sqrt{n} z+1)^{2}}\right\}^{n}=\left\{1-\frac{1}{\left(n z^{2}+2 \sqrt{n} z+1\right)}\right\}^{n}=\left\{1-\frac{1}{n} \frac{1}{\left(z^{2}+2 z / \sqrt{n}+1 / n\right)}\right\}^{n}$
In the limit as $n \rightarrow \infty$, terms in the denominator of the bracketed expression tend to zero with n at a fast enough rate to preserve the result that

$$
\lim _{n \rightarrow \infty}\left\{1-\frac{1}{n} \frac{1}{\left(z^{2}+2 z / \sqrt{n}+1 / n\right)}\right\}^{n}=\lim _{n \rightarrow \infty}\left\{1-\frac{1}{n z^{2}}\right\}^{n}=e^{-1 / z^{2}}
$$

as $n \rightarrow \infty$, as in the Central Limit Theorem proof from lectures. Thus, for $z>0$

$$
F_{Z_{n}}(z) \rightarrow F_{Z}(z)=\exp \left\{-\frac{1}{z^{2}}\right\} \quad\left(\text { and } F_{Z_{n}}(z) \rightarrow 0 \text { for } z \leq 0\right)
$$

which is a valid cdf, the limiting distribution exists (and, in fact, is continuous).
(b) Now suppose that $X_{1}, \ldots X_{n}$ are independent Exponential (1) random variables.
(i) We have

$$
F_{Y_{n}}(y)=\left\{F_{X}(y)\right\}^{n}=\left\{1-e^{-y}\right\}^{n} \quad \text { for } z>0
$$

and is zero for $z \leq 0$.
[2 MARKS]
(ii) For $Z_{n}=Y_{n}-a$, we have that the range of Z_{n} is $(-a, \infty)$

$$
F_{Z_{n}}(z)=P\left[Z_{n} \leq z\right]=P\left[Y_{n}-a \leq z\right]=P\left[Y_{n} \leq z+a\right]=F_{Y_{n}}(z+a)
$$

and hence

$$
F_{Z_{n}}(z)=\left\{1-e^{-(z+a)}\right\}^{n}
$$

for $z>-a$, and $F_{Z_{n}}(z)=0$ for $z \leq-a$.
(iii) For constants $\left\{a_{n}\right\}$

$$
F_{Z_{n}}(z)=\left\{1-e^{-\left(z+a_{n}\right)}\right\}^{n}=\left\{1-e^{-a_{n}} e^{-z}\right\}^{n}=\left\{1-A_{n} e^{-z}\right\}^{n}
$$

where $A_{n}=e^{-a_{n}}$. Now, if $A_{n}=1 / n$ (so that $a_{n}=\log n$), we have, for $z>0$,

$$
F_{Z_{n}}(z)=\left\{1-\frac{e^{-z}}{n}\right\}^{n} \rightarrow \exp \left\{-e^{-z}\right\}
$$

as $n \rightarrow \infty$. This is a valid cdf for a random variable Z on \mathbb{R}. Hence, for large n

$$
F_{Z_{n}}(z)=P\left[Z_{n} \leq z\right] \approx \exp \left\{-e^{-z}\right\}
$$

and therefore
$P\left[Y_{n} \leq y_{0}\right]=P\left[Z_{n}-a_{n} \leq y_{0}\right]=P\left[Z_{n} \leq y_{0}+a_{n}\right]=F_{Z_{n}}\left(y_{0}+a_{n}\right) \approx \exp \left\{-\exp \left\{-\left(y_{0}+a_{n}\right)\right\}\right\}$ so that

$$
P\left[Y_{n}>y_{0}\right] \approx 1-\exp \left\{-\exp \left\{-\left(y_{0}+a_{n}\right)\right\}\right\}
$$

[2 MARKS]
(iv) Here we have the maximum observed between-earthquake time to be 1021 days. Let $X_{1}, \ldots, X_{n}(n=199)$ be the random between-earthquake times and Y_{n} be the (random) maximum value. We have from above that

$$
F_{Y_{n}}(y)=\left\{F_{X}(y)\right\}^{n}=\left\{1-e^{-\lambda y}\right\}^{n} \quad \therefore \quad P\left[Y_{n}>y\right]=1-\left\{1-e^{-\lambda y}\right\}^{n}
$$

In this case, $\lambda=0.01$, so

$$
P\left[Y_{n}>y\right]=1-\left\{1-e^{-0.01 y}\right\}^{n}
$$

But we have observed $Y_{n}=1021$, and under this model

$$
P\left[Y_{n}>1021\right]=1-\left\{1-e^{-0.01 \times 1021}\right\}^{199}=0.0073
$$

which is an unlikely outcome, given the proposed model. Hence it is probable that the proposed model is incorrect.

Re-doing the calculation with $n=200$ (this is acceptable, the question was a little ambiguous), we have again $P\left[Y_{n}>1021\right]=0.0073$, so there is no significant difference in the conclusion.
[4 MARKS]

