M2S1 : ASSESSED COURSEWORK 1 : SOLUTIONS

1. (a) We need that the sum over all possible locations is 1 . Thus

$$
\sum_{(x, y) \text { on the lattice }} \frac{c(\gamma, \phi) \gamma^{x}}{x!\phi^{y}}=1 \quad \Longrightarrow \quad c(\gamma, \phi) \sum_{x=0}^{\infty} \sum_{y=0}^{\infty} \frac{\gamma^{x}}{x!\phi^{y}}=1
$$

Thus

$$
[c(\gamma, \phi)]^{-1}=\sum_{x=0}^{\infty} \sum_{y=0}^{\infty} \frac{\gamma^{x}}{x!\phi^{y}}=\left\{\sum_{x=0}^{\infty} \frac{\gamma^{x}}{x!}\right\}\left\{\sum_{y=0}^{\infty} \phi^{-y}\right\}=e^{\gamma} \frac{1}{1-\frac{1}{\phi}}=\frac{\phi e^{\gamma}}{\phi-1}
$$

summing an exponential series and a geometric series respectively (note $\frac{1}{\phi}<1$ as $\phi>1$). Thus

$$
c(\gamma, \phi)=\frac{(\phi-1) e^{-\gamma}}{\phi}
$$

so that the mass function is given by

$$
\frac{e^{-\gamma} \gamma^{x}(\phi-1)}{x!\phi^{y+1}} \quad x=0,1,2,3, \ldots, y=0,1,2,3, \ldots
$$

[3 MARKS]
(b) For $x=1, y=1$, with $\gamma=1$ and $\phi=3$

$$
\frac{e^{-\gamma} \gamma^{x}(\phi-1)}{x!\phi^{y+1}}=\frac{e^{-1} 1^{1}(3-1)}{1!3^{2}}=0.0818
$$

[2 MARKS]
(c) The probability that the particle lies on the line $y=1$ is given by the Theorem of Total Probability, using a partition into the different possible x values. Summing out the probabilities of points on the lattice that lie on that line, we have

$$
\sum_{x=0}^{\infty} \frac{\gamma^{x}(\phi-1)}{x!\phi^{y+1}}=\frac{(\phi-1)}{\phi^{y+1}}\left\{\sum_{x=0}^{\infty} \frac{e^{-\gamma} \gamma^{x}}{x!}\right\}=\frac{(\phi-1)}{\phi^{y+1}}
$$

when $y=1$, that is

$$
\frac{(\phi-1)}{\phi^{2}}=\frac{3-1}{3^{2}}=\frac{2}{9}
$$

[2 MARKS]
(d) The particle lies no further than two units away from $(0,0)$ if it lies at the points

$$
(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)
$$

so summing up the probabilities over these six points gives the answer 0.8039 , so the probability that it lies further away than that is

$$
1-0.8039=0.1961
$$

[3 MARKS]
2.(a) To find c : note that we need

$$
\lim _{x \rightarrow \infty} F_{X}(x)=1
$$

so, direct from the form of F_{X}, we have that

$$
\frac{c(\mu, \sigma, \alpha)}{\left\{1+\exp \left\{-\left(\frac{x-\mu}{\sigma}\right)\right\}\right\}^{\alpha}} \rightarrow 1 \quad \text { as } x \rightarrow \infty
$$

so we deduce that $c(\mu, \sigma, \alpha)=1$.
[2 MARKS]
(b) By differentiation

$$
f_{X}(x)=\frac{\alpha}{\sigma} \frac{\exp \left\{-\left(\frac{x-\mu}{\sigma}\right)\right\}}{\left\{1+\exp \left\{-\left(\frac{x-\mu}{\sigma}\right)\right\}\right\}^{\alpha+1}} \quad x \in \mathbb{R}
$$

[2 MARKS]
(c) $F_{X}\left(x_{M}\right)=0.5$ implies that x_{M} is the solution to

$$
\frac{1}{\left\{1+\exp \left\{-\left(\frac{x_{M}-\mu}{\sigma}\right)\right\}\right\}^{\alpha}}=\frac{1}{2} \Leftrightarrow x_{M}=\mu-\sigma \log \left(2^{1 / \alpha}-1\right)
$$

Then f_{X} is symmetric about x_{M} if, for $x>0$

$$
f_{X}\left(x_{M}-x\right)=f_{X}\left(x_{M}+x\right)
$$

Now

$$
\begin{aligned}
f_{X}\left(x_{M}-x\right) & =f_{X}\left(\mu-\sigma \log \left(2^{1 / \alpha}-1\right)-x\right)=\frac{\alpha}{\sigma} \frac{\exp \left\{\log \left(2^{1 / \alpha}-1\right)+x\right\}}{\left\{1+\exp \left\{\log \left(2^{1 / \alpha}-1\right)+x\right\}\right\}^{\alpha+1}} \\
& =\frac{\alpha}{\sigma} \frac{\left(2^{1 / \alpha}-1\right) e^{x}}{\left\{1+\left(2^{1 / \alpha}-1\right) e^{x}\right\}^{\alpha+1}} \neq \frac{\alpha}{\sigma} \frac{\left(2^{1 / \alpha}-1\right) e^{-x}}{\left\{1+\left(2^{1 / \alpha}-1\right) e^{-x}\right\}^{\alpha+1}}=f_{X}\left(x_{M}+x\right)
\end{aligned}
$$

unless $\alpha=1$. This is the only case that gives symmetry about x_{M}.
[1 MARK]
(d) The range of the transformed variable is $\mathbb{Y} \equiv(0,1)$, as F_{X} always returns a number between 0 and 1 as it is a cdf. The answer $\mathbb{Y} \equiv[0,1]$ is also acceptable.
[1 MARK]
From first principles, for $y \in(0,1)$,

$$
F_{Y}(y)=P[Y \leq y]=P\left[F_{X}(X) \leq y\right]=P\left[X \leq F_{X}^{-1}(y)\right]=F_{X}\left(F_{X}^{-1}(y)\right)=y
$$

as the transformation $g(t)=F_{X}(t)$ is monotone and increasing (in this case, and in general for continuous random variables).
[3 MARKS]
Thus by differentiation

$$
f_{Y}(y)=1 \quad 0<y<1
$$

and zero otherwise.

