WORKED EXAMPLES 1

TOTAL PROBABILITY AND BAYES THEOREM

EXAMPLE 1. A biased coin (with probability of obtaining a Head equal to $p>0$) is tossed repeatedly and independently until the first head is observed. Compute the probability that the first head appears at an even numbered toss.

SOLUTION: Define

- sample space Ω to be all possible infinite binary sequences of coin tosses
- event H_{1} - head on first toss
- event E - first head on even numbered toss.

We want $P(E)$: using the Theorem of Total Probability, and the partition of Ω given by $\left\{H_{1}, H_{1}^{\prime}\right\}$

$$
P(E)=P\left(E \mid H_{1}\right) P\left(H_{1}\right)+P\left(E \mid H_{1}^{\prime}\right) P\left(H_{1}^{\prime}\right)
$$

Now clearly, $P\left(E \mid H_{1}\right)=0$ (given H_{1}, that a head appears on the first toss, E cannot occur) and also $P\left(E \mid H_{1}^{\prime}\right)$ can be seen to be given by

$$
P\left(E \mid H_{1}^{\prime}\right)=P\left(E^{\prime}\right)=1-P(E)
$$

(given that a head does not appear on the first toss, the required conditional probability is merely the probability that the sequence concludes after a further odd number of tosses, that is, the probability of E^{\prime}). Hence $P(E)$ satisfies

$$
P(E)=0 \times p+(1-P(E)) \times(1-p)=(1-p)(1-P(E))
$$

so that

$$
P(E)=\frac{1-p}{2-p} .
$$

Alternately, consider the partition of E into E_{1}, E_{2}, \ldots where E_{k} is the event that the first head occurs on the $2 k$ th toss. Then $E=\bigcup_{k=1}^{\infty} E_{k}$, and

$$
P(E)=P\left(\bigcup_{k=1}^{\infty} E_{k}\right)=\sum_{k=1}^{\infty} P\left(E_{k}\right) .
$$

Now $P\left(E_{k}\right)=(1-p)^{2 k-1} p$ (that is, $2 k-1$ tails, then a head), so

$$
\begin{aligned}
P(E) & =\sum_{k=1}^{\infty}(1-p)^{2 k-1} p \\
& =\frac{p}{1-p} \sum_{k=1}^{\infty}(1-p)^{2 k} \\
& =\frac{p}{1-p} \frac{(1-p)^{2}}{1-(1-p)^{2}} \\
& =\frac{1-p}{2-p}
\end{aligned}
$$

EXAMPLE 2. Two players A and B are competing at a trivia quiz game involving a series of questions. On any individual question, the probabilities that A and B give the correct answer are α and β respectively, for all questions, with outcomes for different questions being independent. The game finishes when a player wins by answering a question correctly.

Compute the probability that A wins if
(a) A answers the first question
(b) B answers the first question

SOLUTION: Define

- sample space Ω to be all possible infinite sequences of answers
- event $A-\mathrm{A}$ answers the first question
- event F - game ends after the first question
- event W - A wins.

We want

$$
P(W \mid A) \quad \text { and } \quad P\left(W \mid A^{\prime}\right)
$$

Using the Theorem of Total Probability, and the partition given by $\left\{F, F^{\prime}\right\}$

$$
P(W \mid A)=P(W \mid A \cap F) P(F \mid A)+P\left(W \mid A \cap F^{\prime}\right) P\left(F^{\prime} \mid A\right)
$$

Now, clearly

$$
P(F \mid A)=P[\text { A answers first question correctly }]=\alpha \quad P\left(F^{\prime} \mid A\right)=1-\alpha
$$

and $P(W \mid A \cap F)=1$, but $P\left(W \mid A \cap F^{\prime}\right)=P\left(W \mid A^{\prime}\right)$, so that

$$
\begin{equation*}
P(W \mid A)=(1 \times \alpha)+\left(P\left(W \mid A^{\prime}\right) \times(1-\alpha)\right) .=\alpha+P\left(W \mid A^{\prime}\right)(1-\alpha) \tag{1}
\end{equation*}
$$

Similarly

$$
P\left(W \mid A^{\prime}\right)=P\left(W \mid A^{\prime} \cap F\right) P\left(F \mid A^{\prime}\right)+P\left(W \mid A^{\prime} \cap F^{\prime}\right) P\left(F^{\prime} \mid A^{\prime}\right)
$$

We have

$$
P\left(F \mid A^{\prime}\right)=P[\mathrm{~B} \text { answers first question correctly }]=\beta \quad P\left(F^{\prime} \mid A\right)=1-\beta
$$

but $P\left(W \mid A^{\prime} \cap F\right)=0$. Finally $P\left(W \mid A^{\prime} \cap F^{\prime}\right)=P(W \mid A)$, so that

$$
\begin{equation*}
P\left(W \mid A^{\prime}\right)=(0 \times \beta)+(P(W \mid A) \times(1-\beta)) .=P(W \mid A)(1-\beta) \tag{2}
\end{equation*}
$$

Solving (1) and (2) simultaneously gives, for (a) and (b)

$$
P(W \mid A)=\frac{\alpha}{1-(1-\alpha)(1-\beta)} \quad P\left(W \mid A^{\prime}\right)=\frac{(1-\beta) \alpha}{1-(1-\alpha)(1-\beta)}
$$

Note: recall, for any events E_{1} and E_{2} we have that

$$
P\left(E_{1}^{\prime} \mid E_{2}\right)=1-P\left(E_{1} \mid E_{2}\right)
$$

but not necessarily that

$$
P\left(E_{1} \mid E_{2}^{\prime}\right)=1-P\left(E_{1} \mid E_{2}\right)
$$

EXAMPLE 3. Patients are recruited onto the two arms (0 - Control, 1-Treatment) of a clinical trial. The probability that an adverse outcome occurs on the control arm is p_{0}, and is p_{1} for the treatment arm. Patients are allocated alternately onto the two arms in the sequence $010101 \ldots$, and their outcomes are independent

What is the probability that the first adverse event occurs on the control arm. ?
SOLUTION: Define

- sample space Ω to be all possible infinite sequences of patients outcomes
- event E_{1} - first patient (allocated onto the control arm) suffers an adverse outcome
- event E_{2} - first patient (allocated onto the control arm) does not suffer an adverse outcome, but the second patient (allocated onto the treatment arm) does suffer an adverse outcome
- event E_{0} - neither of the first two patients suffer adverse outcomes
- event F - first adverse event occurs on the control arm

We want $P(F)$. Now the events E_{1}, E_{2} and E_{0} partition Ω, so, by the Theorem,

$$
P(F)=P\left(F \mid E_{1}\right) P\left(E_{1}\right)+P\left(F \mid E_{2}\right) P\left(E_{2}\right)+P\left(F \mid E_{0}\right) P\left(E_{0}\right)
$$

Now

$$
P\left(E_{1}\right)=p_{0} \quad P\left(E_{2}\right)=\left(1-p_{0}\right) p_{1} \quad P\left(E_{0}\right)=\left(1-p_{0}\right)\left(1-p_{1}\right)
$$

and $P\left(F \mid E_{1}\right)=1, P\left(F \mid E_{2}\right)=0$. Finally, as after two non-adverse outcomes, the allocation process effectively re-starts, so $P\left(F \mid E_{0}\right)=P(F)$. Hence

$$
P(F)=\left(1 \times p_{0}\right)+\left(0 \times\left(1-p_{0}\right) p_{1}\right)+\left(P(F) \times\left(1-p_{0}\right)\left(1-p_{1}\right)\right)=p_{0}+\left(1-p_{0}\right)\left(1-p_{1}\right) P(F)
$$

which can be re-arranged to give

$$
P(F)=\frac{p_{0}}{p_{0}+p_{1}-p_{0} p_{1}}
$$

EXAMPLE 4. In a tennis match, with the score at deuce, the game is one by the first player who gets a clear lead of two points.

If the probability that given player wins a particular point is θ, and all points are played independently, what is the probability that player eventually wins the game

SOLUTION: Define

- sample space Ω to be all possible infinite sequences of points
- event W_{i} - nominated player wins the i th point
- event V_{i} - nominated player wins the game on the i th point
- event V - nominated player wins the game.

We want $P(V)$. The events $\left\{W_{1}, W_{1}^{\prime}\right\}$ partition Ω, and thus, by the Theorem

$$
\begin{equation*}
P(V)=P\left(V \mid W_{1}\right) P\left(W_{1}\right)+P\left(V \mid W_{1}^{\prime}\right) P\left(W_{1}^{\prime}\right) \tag{3}
\end{equation*}
$$

Now $P\left(W_{1}\right)=\theta$ and $P\left(W_{1}^{\prime}\right)=1-\theta$. To get $P\left(V \mid W_{1}\right)$ and $P\left(V \mid W_{1}^{\prime}\right)$, we need to further condition on the result of the second point, and again use the Theorem: for example

$$
\begin{align*}
& P\left(V \mid W_{1}\right)=P\left(V \mid W_{1} \cap W_{2}\right) P\left(W_{2} \mid W_{1}\right)+P\left(V \mid W_{1} \cap W_{2}^{\prime}\right) P\left(W_{2}^{\prime} \mid W_{1}\right) \tag{4}\\
& P\left(V \mid W_{1}^{\prime}\right)=P\left(V \mid W_{1}^{\prime} \cap W_{2}\right) P\left(W_{2} \mid W_{1}^{\prime}\right)+P\left(V \mid W_{1}^{\prime} \cap W_{2}^{\prime}\right) P\left(W_{2}^{\prime} \mid W_{1}^{\prime}\right)
\end{align*}
$$

where

$$
\begin{array}{ll}
P\left(V \mid W_{1} \cap W_{2}\right)=1 & P\left(W_{2} \mid W_{1}\right)=P\left(W_{2}\right)=\theta \\
P\left(V \mid W_{1} \cap W_{2}^{\prime}\right)=P(V) & P\left(W_{2}^{\prime} \mid W_{1}\right)=P\left(W_{2}^{\prime}\right)=1-\theta \\
P\left(V \mid W_{1}^{\prime} \cap W_{2}\right)=P(V) & P\left(W_{2} \mid W_{1}^{\prime}\right)=P\left(W_{2}\right)=\theta \\
P\left(V \mid W_{1}^{\prime} \cap W_{2}^{\prime}\right)=0 & P\left(W_{2}^{\prime} \mid W_{1}^{\prime}\right)=P\left(W_{2}^{\prime}\right)=1-\theta
\end{array}
$$

as,
given $W_{1} \cap W_{2} \quad$: the game is over, and the player has won
given $W_{1} \cap W_{2}^{\prime}$: the game is back at deuce
given $W_{1}^{\prime} \cap W_{2} \quad$: the game is back at deuce
given $W_{1}^{\prime} \cap W_{2}^{\prime} \quad$: the game is over, and the player has lost
and the results of successive points are independent. Thus

$$
\begin{aligned}
& P\left(V \mid W_{1}\right)=(1 \times \theta)+(P(V) \times(1-\theta))=\theta+(1-\theta) P(V) \\
& P\left(V \mid W_{1}^{\prime}\right)=(P(V) \times \theta)+0 \times(1-\theta)=\theta P(V)
\end{aligned}
$$

Hence, combining (3) and (4) we have

$$
P(V)=(\theta+(1-\theta) P(V)) \theta+\theta P(V)(1-\theta)=\theta^{2}+2 \theta(1-\theta) P(V) \Longrightarrow P(V)=\frac{\theta^{2}}{1-2 \theta(1-\theta)}
$$

Alternately, $\left\{V_{i}, i=1,2, \ldots\right\}$ partition V. Hence

$$
P(V)=\sum_{i=1}^{\infty} P\left(V_{i}\right)
$$

Now, $P\left(V_{i}\right)=0$ if i is odd, as the game can never be completed after an odd number of points. For $i=2, P\left(V_{2}\right)=\theta^{2}$, and for $i=2 k+2(k=1,2,3, \ldots)$ we have

$$
P\left(V_{i}\right)=P\left(V_{2 k+2}\right)=2^{k} \theta^{k}(1-\theta)^{k} \times \theta^{2}
$$

- the score must stand at deuce after $2 k$ points and the game must not have been completed prior to this, indicating that there must have been k successive drawn pairs of points, each of which could be arranged win/lose or lose/win for the nominated player. Then that player must win the final two points. Hence

$$
P(V)=\sum_{k=0}^{\infty} P\left(V_{2 k+2}\right)=\theta^{2} \sum_{k=0}^{\infty}\{2 \theta(1-\theta)\}^{k}=\frac{\theta^{2}}{1-2 \theta(1-\theta)}
$$

as the term in the geometric series satisfies $|2 \theta(1-\theta)|<1$.

EXAMPLE 5 A coin for which $P($ Heads $)=p$ is tossed until two successive Tails are obtained.
Find the probability that the experiment is completed on the nth toss.

SOLUTION: Define

- sample space Ω to be all possible infinite sequences of tosses
- event E_{1} : first toss is H
- event E_{2} : first two tosses are $T H$
- event E_{3} : first two tosses are $T T$
- event F_{n} : experiment completed on the nth toss

We want $P\left(F_{n}\right)$ for $n=2,3, \ldots$.The events $\left\{E_{1}, E_{2}, E_{3}\right\}$ partition Ω, and thus, by the Theorem

$$
\begin{equation*}
P\left(F_{n}\right)=P\left(F_{n} \mid E_{1}\right) P\left(E_{1}\right)+P\left(F_{n} \mid E_{2}\right) P\left(E_{2}\right)+P\left(F_{n} \mid E_{3}\right) P\left(E_{3}\right) \tag{5}
\end{equation*}
$$

Now for $n=2$

$$
P\left(F_{2}\right)=P\left(E_{3}\right)=(1-p)^{2}
$$

and for $n>2$,

$$
P\left(F_{n} \mid E_{1}\right)=P\left(F_{n-1}\right) \quad P\left(F_{n} \mid E_{2}\right)=P\left(F_{n-2}\right) \quad P\left(F_{n} \mid E_{3}\right)=0
$$

as given E_{1} we need $n-1$ further tosses that finish $T T$ for F_{n} to occur, and given E_{2}, we need $n-2$ further tosses that finish $T T$ for F_{n} to occur, with all tosses independent. Hence, if $p_{n}=P\left(F_{n}\right)$ then $p_{2}=(1-p)^{2}$, otherwise, from (5), p_{n} satisfies

$$
p_{n}=\left(p_{n-1} \times p\right)+\left(p_{n-2} \times(1-p) p\right)=p p_{n-1}+p(1-p) p_{n-2}
$$

To find p_{n} explicitly, try a solution of the form $p_{n}=A \lambda_{1}^{n}+B \lambda_{2}^{n}$ which gives

$$
A \lambda_{1}^{n}+B \lambda_{2}^{n}=p\left(A \lambda_{1}^{n-1}+B \lambda_{2}^{n-1}\right)+p(1-p)\left(A \lambda_{1}^{n-2}+B \lambda_{2}^{n-2}\right)
$$

First, collecting terms in λ_{1} gives

$$
\lambda_{1}^{n}=p \lambda_{1}^{n-1}+p(1-p) \lambda_{1}^{n-2} \Longrightarrow \lambda_{1}^{2}-p \lambda_{1}-p(1-p)=0
$$

indicating that λ_{1} and λ_{2} are given as the roots of this quadratic, that is

$$
\lambda_{1}=\frac{p-\sqrt{p^{2}+4 p(1-p)}}{2} \quad \lambda_{2}=\frac{p+\sqrt{p^{2}+4 p(1-p)}}{2}
$$

Furthermore,

$$
\begin{aligned}
& n=1: p_{1}=0 \quad \Longrightarrow A \lambda_{1}+B \lambda_{2}=0 \\
& n=2: p_{2}=(1-p)^{2} \Longrightarrow A \lambda_{1}^{2}+B \lambda_{2}^{2}=(1-p)^{2} \\
& \Longrightarrow A=\frac{(1-p)^{2}}{\lambda_{1}\left(\lambda_{1}-\lambda_{2}\right)} \quad B=-\frac{\lambda_{1}}{\lambda_{2}} A=-\frac{(1-p)^{2}}{\lambda_{2}\left(\lambda_{1}-\lambda_{2}\right)} \\
& \Longrightarrow p_{n}=-\frac{(1-p)^{2} \lambda_{1}^{n}}{\lambda_{1}\left(\lambda_{2}-\lambda_{1}\right)}+\frac{(1-p)^{2} \lambda_{2}^{n}}{\lambda_{2}\left(\lambda_{2}-\lambda_{1}\right)}=\frac{(1-p)^{2}}{\sqrt{p(4-3 p)}}\left(\lambda_{2}^{n-1}-\lambda_{1}^{n-1}\right) \quad n \geq 2
\end{aligned}
$$

EXAMPLE 6 Information is transmitted digitally as a binary sequence know as "bits". However, noise on the channel corrupts the signal, in that a digit transmitted as 0 is received as 1 with probability $1-\alpha$, with a similar random corruption when the digit 1 is transmitted. It has been observed that, across a large number of transmitted signals, the $0 s$ and $1 s$ are transmitted in the ratio $3: 4$.

Given that the sequence 101 is received, what is the probability distribution over transmitted signals? Assume that the transmission and reception processes are independent

SOLUTION: Define

- sample space Ω to be all possible binary sequences of length three that is

$$
\{000,001,010,011,100,101,110,111\}
$$

- a corresponding set of
signal events $\left\{S_{0}, S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}, S_{7}\right\}$ and
reception events $\left\{R_{0}, R_{1}, R_{2}, R_{3}, R_{4}, R_{5}, R_{6}, R_{7}\right\}$

We have observed event R_{5}, that 101 was received; we wish to compute $P\left(S_{i} \mid R_{5}\right)$, for $i=0,1, \ldots, 7$. However, on the information given, we only have (or can compute) $P\left(R_{5} \mid S_{i}\right)$. First, using the Theorem of Total Probability, we compute $P\left(R_{5}\right)$

$$
\begin{equation*}
P\left(R_{5}\right)=\sum_{i=0}^{7} P\left(R_{5} \mid S_{i}\right) P\left(S_{i}\right) . \tag{6}
\end{equation*}
$$

Consider $P\left(R_{5} \mid S_{0}\right)$; if 000 is transmitted, the probability that 101 is received is $(1-\alpha) \times \alpha \times(1-\alpha)=$ $\alpha(1-\alpha)^{2}$ (corruption, no corruption, corruption) By complete evaluation we have

$$
\begin{array}{llll}
P\left(R_{5} \mid S_{0}\right)=\alpha(1-\alpha)^{2} & P\left(R_{5} \mid S_{1}\right)=\alpha^{2}(1-\alpha) & P\left(R_{5} \mid S_{2}\right)=(1-\alpha)^{3} & P\left(R_{5} \mid S_{3}\right)=\alpha(1-\alpha)^{2} \\
P\left(R_{5} \mid S_{4}\right)=\alpha^{2}(1-\alpha) & P\left(R_{5} \mid S_{5}\right)=\alpha^{3} & P\left(R_{5} \mid S_{6}\right)=\alpha(1-\alpha)^{2} & P\left(R_{5} \mid S_{7}\right)=\alpha^{2}(1-\alpha)
\end{array}
$$

Now, the prior information about digits transmitted is that the probability of transmitting a 1 is $4 / 7$, so

$$
\begin{array}{llll}
P\left(S_{0}\right)=\left(\frac{3}{7}\right)^{3} & P\left(S_{1}\right)=\left(\frac{4}{7}\right)\left(\frac{3}{7}\right)^{2} & P\left(S_{2}\right)=\left(\frac{4}{7}\right)\left(\frac{3}{7}\right)^{2} & P\left(S_{3}\right)=\left(\frac{4}{7}\right)^{2}\left(\frac{3}{7}\right) \\
P\left(S_{4}\right)=\left(\frac{4}{7}\right)\left(\frac{3}{7}\right)^{2} & P\left(S_{5}\right)=\left(\frac{4}{7}\right)^{2}\left(\frac{3}{7}\right) & P\left(S_{6}\right)=\left(\frac{4}{7}\right)^{2}\left(\frac{3}{7}\right) & P\left(S_{7}\right)=\left(\frac{4}{7}\right)^{3}
\end{array}
$$

and hence (6) can be computed as

$$
P\left(R_{5}\right)=\frac{48 \alpha^{3}+136 \alpha^{2}(1-\alpha)+123 \alpha(1-\alpha)^{2}+36(1-\alpha)^{3}}{343} .
$$

Finally, using Bayes Theorem, we have the probability distribution over $\left\{S_{0}, S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}, S_{7}\right\}$ given by

$$
P\left(S_{i} \mid R_{5}\right)=\frac{P\left(R_{5} \mid S_{i}\right) P\left(S_{i}\right)}{P\left(R_{5}\right)}
$$

For example, the probability of correct reception is

$$
P\left(S_{5} \mid R_{5}\right)=\frac{P\left(R_{5} \mid S_{5}\right) P\left(S_{5}\right)}{P\left(R_{5}\right)}=\frac{48 \alpha^{3}}{48 \alpha^{3}+136 \alpha^{2}(1-\alpha)+123 \alpha(1-\alpha)^{2}+36(1-\alpha)^{3}}
$$

Figure 1: EXAMPLE 6: Posterior probability as a function of α

EXAMPLE 7 While watching a game of Champions League football in a bar, you observe someone who is clearly supporting Manchester United in the game.

What is the probability that they were actually born within 25 miles of Manchester ?. Assume that the probability that a randomly selected person in a typical local bar environment is born within 25 miles of Manchester is $\frac{1}{20}$, and that the chance that a person born within 25 miles of Manchester actually supports United is $\frac{7}{10}$. Assume also that the probability that a person not born within 25 miles of Manchester supports United with probability $\frac{1}{10}$

SOLUTION: Define

- B - event that the person is born within 25 miles of Manchester
- U - event that the person supports United.

We want $P(B \mid U)$. By Bayes Theorem,

$$
\begin{aligned}
P(B \mid U) & =\frac{P(U \mid B) P(B)}{P(U)}=\frac{P(U \mid B) P(B)}{P(U \mid B) P(B)+P\left(U \mid B^{\prime}\right) P\left(B^{\prime}\right)} \\
& =\frac{\frac{7}{10} \frac{1}{20}}{\frac{7}{10} \frac{1}{20}+\frac{1}{10} \frac{19}{20}} \\
& =\frac{7}{26} \approx 0.269
\end{aligned}
$$

