SAMPLING DISTRIBUTION FOR NORMAL SAMPLES PROOF NOT EXAMINABLE

Theorem: If X_{1}, \ldots, X_{n} is a random sample from a normal distribution, say $X_{i} \sim N\left(\mu, \sigma^{2}\right)$, then
(a) \bar{X} is independent of $\left\{X_{i}-\bar{X}, i=1, \ldots, n\right\}$
(b) \bar{X} and s^{2} are independent random variables
(c) The random variable

$$
\frac{(n-1) s^{2}}{\sigma^{2}}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

has a chi-squared distribution with $n-1$ degrees of freedom.
Proof: (a) The joint pdf X_{1}, \ldots, X_{n} is the multivariate normal density

$$
f_{X_{1}, \ldots, X_{k}}\left(x_{1}, \ldots, x_{k}\right)=\left(\frac{1}{2 \pi}\right)^{n / 2} \frac{1}{|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}
$$

where $\Sigma=\sigma^{2} I_{n}$, and I_{n} is the $n \times n$ identity matrix. Consider the multivariate transformation to Y_{1}, \ldots, Y_{n} where

$$
\left.\begin{array}{l}
Y_{1}=\bar{X} \\
Y_{i}=X_{i}-\bar{X}, i=2, \ldots, n
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}
X_{1}=Y_{1}-\sum_{i=2}^{n} Y_{i} \\
X_{i}=Y_{i}+Y_{1}, \quad i=2, \ldots, n
\end{array}\right.
$$

Thus, in vector terms $\mathbf{Y}=A \mathbf{X}$, or equivalently $\mathbf{X}=A^{-1} \mathbf{Y}$, where A is the $n \times n$ matrix with (i, j) th element

$$
[A]_{i j}=\left\{\begin{array}{cl}
1-\frac{1}{n} & i=j \text { and } i \neq 1, \\
\frac{1}{n} & i=1 \\
-\frac{1}{n} & \text { otherwise }
\end{array}\right.
$$

that is, we have a linear transformation, and the Jacobian of the transformation does not depend on any y. Note that

$$
\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}+\bar{x}-\mu\right)^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2}
$$

where $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$. Note also that the joint pdf of X_{1}, \ldots, X_{n} is, in scalar form

$$
\begin{aligned}
f_{X_{1}, . ., X_{n}}\left(x_{1}, . ., x_{n}\right) & =\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right\} \\
& =\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2}\right]\right\} .
\end{aligned}
$$

Now

$$
x_{1}-\bar{x}=-\sum_{i=2}^{n}\left(x_{i}-\bar{x}\right)=-\sum_{i=2}^{n} y_{i}
$$

and so

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\left(x_{1}-\bar{x}\right)^{2}+\sum_{i=2}^{n}\left(x_{i}-\bar{x}\right)^{2}=\left(-\sum_{i=2}^{n} y_{i}\right)^{2}+\sum_{i=2}^{n} y_{i}^{2}
$$

The Jacobian of the transformation is n, so the joint density of Y_{1}, \ldots, Y_{n} is given by direct substitution into (1)

$$
\begin{aligned}
f_{Y_{1}, ., Y_{n}}\left(y_{1}, . ., y_{n}\right) & =n\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\left(-\sum_{i=2}^{n} y_{i}\right)^{2}+\sum_{i=2}^{n} y_{i}^{2}+n\left(y_{1}-\mu\right)^{2}\right]\right\} \\
& =n\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\left(-\sum_{i=2}^{n} y_{i}\right)^{2}+\sum_{i=2}^{n} y_{i}^{2}\right]\right\} \times \exp \left\{-\frac{n}{2 \sigma^{2}}\left(y_{1}-\mu\right)^{2}\right\}
\end{aligned}
$$

Hence

$$
f_{Y_{1}, . ., Y_{n}}\left(y_{1}, . ., y_{n}\right)=f_{Y_{2}, ., Y_{n}}\left(y_{2}, . ., y_{n}\right) f_{Y_{1}}\left(y_{1}\right)
$$

and therefore Y_{1} is independent of Y_{2}, \ldots, Y_{n}. Hence \bar{X} is independent of the random variables terms $\left\{Y_{i}=X_{i}-\bar{X}, i=2, \ldots, n\right\}$. Finally, \bar{X} is also independent of $X_{1}-\bar{X}$ as

$$
X_{1}-\bar{X}=-\sum_{i=2}^{n}\left(X_{i}-\bar{X}\right)
$$

(b) s^{2} is a function only of $\left\{X_{i}-\bar{X}, i=1, \ldots, n\right\}$. As \bar{X} is independent of these variables, \bar{X} and s^{2} are also independent.
(c)The random variables that appear as sums of squares terms that joint pdf are

$$
\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{\sigma^{2}}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}}+\frac{n(\bar{X}-\mu)^{2}}{\sigma^{2}}
$$

or $V_{1}=V_{2}+V_{3}$, say. Now, $X_{i} \sim N\left(\mu, \sigma^{2}\right)$, so therefore

$$
\frac{\left(X_{i}-\mu\right)^{2}}{\sigma^{2}} \sim N(0,1) \Longrightarrow \frac{\left(X_{i}-\mu\right)^{2}}{\sigma^{2}} \sim \chi_{1}^{2} \equiv G a\left(\frac{1}{2}, \frac{1}{2}\right) \Longrightarrow \frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{\sigma^{2}}=V_{1} \sim \chi_{n}^{2}
$$

as the X_{i} S are independent, and the sum of n independent $G a(1 / 2,1 / 2)$ variables has a $G a(n / 2,1 / 2)$ distribution. Similarly, as $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right), V_{3} \sim \chi_{1}^{2}$ By part (b), V_{2} and V_{3} are independent, and so the mgfs of V_{1}, V_{2} and V_{3} are related by

$$
M_{V_{1}}(t)=M_{V_{2}}(t) M_{V_{3}}(t) \Longrightarrow M_{V_{2}}(t)=\frac{M_{V_{1}}(t)}{M_{V_{3}}(t)}
$$

As V_{1} and V_{3} are Gamma random variables, $M_{V_{1}}$ and $M_{V_{3}}$ are given by

$$
M_{V_{1}}(t)=\left(\frac{1 / 2}{1 / 2-t}\right)^{n / 2}, M_{V_{3}}(t)=\left(\frac{1 / 2}{1 / 2-t}\right)^{1 / 2} \Longrightarrow M_{V_{2}}(t)=\left(\frac{1 / 2}{1 / 2-t}\right)^{(n-1) / 2}
$$

which is also the mgf of a Gamma random variable, and hence

$$
V_{2}=\frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

