WORKED EXAMPLES 6

MAXIMUM LIKELIHOOD ESTIMATION

Maximum Likelihood Estimation is a systematic technique for estimating parameters in a probability model from a data sample. Suppose a sample $x_1, ..., x_n$ has been obtained from a probability model specified by mass or density function $f_X(x; \theta)$ depending on parameter(s) θ lying in parameter space Θ . The **maximum likelihood estimate** or **m.l.e.** is produced as follows;

<u>STEP 1</u> Write down the **likelihood function**, $L(\theta)$, where

$$L(\theta) = \prod_{i=1}^{n} f_X(x_i; \theta)$$

that is, the product of the *n* mass/density function terms (where the *i*th term is the mass/density function evaluated at x_i) viewed as a function of θ .

<u>STEP 2</u> Take the natural log of the likelihood, collect terms involving θ .

<u>STEP 3</u> Find the value of $\theta \in \Theta$, $\hat{\theta}$, for which $\log L(\theta)$ is maximized, for example by differentiation. If θ is a single parameter, find $\hat{\theta}$ by solving

$$\frac{d}{d\theta} \left\{ \log L(\theta) \right\} = 0$$

in the parameter space Θ . If θ is vector-valued, say $\theta = (\theta_1, ..., \theta_k)$, then find $\hat{\theta} = (\hat{\theta}_1, ..., \hat{\theta}_k)$ by simultaneously solving the k equations given by

$$\frac{\partial}{\partial \theta_j} \{ \log L(\theta) \} = 0 \qquad j = 1, ..., k$$

in parameter space Θ . Note that, if parameter space Θ is a bounded interval, then the maximum likelihood estimate may lie on the boundary of Θ .

STEP 4 Check that the estimate $\hat{\theta}$ obtained in STEP 3 truly corresponds to a maximum in the (log) likelihood function by inspecting the second derivative of log $L(\theta)$ with respect to θ . In the single parameter case, if the second derivative of the log-likelihood is negative at $\theta = \hat{\theta}$, then $\hat{\theta}$ is confirmed as the m.l.e. of θ (other techniques may be used to verify that the likelihood is maximized at $\hat{\theta}$).

<u>EXAMPLE</u> Suppose a sample $x_1, ..., x_n$ is modelled by a Poisson distribution with parameter denoted λ , so that

$$f_X(x;\theta) \equiv f_X(x;\lambda) = \frac{\lambda^x}{x!}e^{-\lambda}$$
 $x = 0, 1, 2, ...$

for some $\lambda > 0$. To estimate λ by maximum likelihood, proceed as follows.

<u>STEP 1</u> Calculate the likelihood function $L(\lambda)$.

$$L(\lambda) = \prod_{i=1}^{n} f_X(x_i;\lambda) = \prod_{i=1}^{n} \left\{ \frac{\lambda^{x_i}}{x_i!} e^{-\lambda} \right\} = \frac{\lambda^{x_1+\ldots+x_n}}{x_1!\ldots x_n!} e^{-n\lambda}$$

for $\lambda \in \Theta = R^+$.

<u>STEP 2</u> Calculate the log-likelihood $\log L(\lambda)$.

$$\log L(\lambda) = \sum_{i=1}^{n} x_i \log \lambda - n\lambda - \sum_{i=1}^{n} \log(x_i!)$$

<u>STEP 3</u> Differentiate $\log L(\lambda)$ with respect to λ , and equate the derivative to zero to find the m.l.e..

$$\frac{d}{d\lambda} \{ \log L(\lambda) \} = \sum_{i=1}^{n} \frac{x_i}{\lambda} - n = 0 \Rightarrow \widehat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}$$

Thus the maximum likelihood estimate of λ is $\hat{\lambda} = \bar{x}$

<u>STEP 4</u> Check that the second derivative of $\log L(\lambda)$ with respect to λ is negative at $\lambda = \hat{\lambda}$.

$$\frac{d^2}{d\lambda^2} \left\{ \log L(\lambda) \right\} = -\frac{1}{\lambda^2} \sum_{i=1}^n x_i < 0 \quad \text{at } \lambda = \widehat{\lambda}$$

EXAMPLE: The following data are the observed frequencies of occurrence of domestic accidents: we have n = 647 data as follows Number of accidents Frequency

nber of accidents	Frequency
0	447
1	132
2	42 .
3	21
4	3
5	2

The estimate of λ if a Poisson model is assumed is

$$\widehat{\lambda}_{ML} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{(447 \times 0) + (132 \times 1) + (42 \times 2) + (21 \times 3) + (3 \times 4) + (2 \times 5)}{647} = 0.465$$

