WORKED EXAMPLES 3
COVARIANCE CALCULATIONS

EXAMPLE Let X and Y be discrete random variables with joint mass function defined by
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and zero otherwise. The marginal mass functions, expectations and variances of X and Y are
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and to compute the covariance we also need to compute Ey, ,, [XY]
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Hence the two variables have covariance and correlation zero. But note that X and Y are not inde-
pendent as it is not true that
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for all x and y.



EXAMPLE Let X and Y be continuous random variables with joint pdf
fxy(@y) =3z 0<y<az<l
and zero otherwise.

The marginal pdfs, expectations and variances of X and Y are
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and to compute the covariance we also need to compute Ey, ,, [XY]
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