M2S1 - EXERCISES 6

DISTRIBUTIONAL RESULTS

1. The joint pdf $f_{X,Y}$ of positive random variables X and Y is specified as

$$f_{X,Y}(x,y) = f_{X|Y}(x|y)f_Y(y)$$

where $X|Y=y\sim Exponential(y)$ and $Y\sim Gamma(\alpha,\beta)$. Identify the marginal distribution of X.

2. The Bivariate Normal Distribution: Suppose that X_1 and X_2 are i.i.d Normal(0,1) random variables. Let random variables Y_1 and Y_2 be defined by

$$\begin{array}{ll} Y_1 &= \mu_1 + \sigma_1 \sqrt{1 - \rho^2} X_1 + \sigma_1 \rho X_2 \\ Y_2 &= \mu_2 + \sigma_2 X_2 \end{array} \qquad \text{or equivalently} \qquad \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} + \begin{bmatrix} \sigma_1 \sqrt{1 - \rho^2} & \sigma_1 \rho \\ 0 & \sigma_2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

for positive constants σ_1 and σ_2 , and $|\rho| < 1$. Find the joint pdf of (Y_1, Y_2) .

Show that, marginally for $i = 1, 2, Y_i \sim Normal(\mu_i, \sigma_i^2)$, and that conditionally

$$\begin{aligned} Y_{1}|Y_{2} &= y_{2} &\sim Normal\left(\mu_{1} + \frac{\rho\sigma_{1}}{\sigma_{2}}\left(y_{2} - \mu_{2}\right), \sigma_{1}^{2}\left(1 - \rho^{2}\right)\right) \\ Y_{2}|Y_{1} &= y_{1} &\sim Normal\left(\mu_{2} + \frac{\rho\sigma_{2}}{\sigma_{1}}\left(y_{1} - \mu_{1}\right), \sigma_{2}^{2}\left(1 - \rho^{2}\right)\right) \end{aligned}$$

Find the correlation of Y_1 and Y_2 .

3. Suppose that U_1 and U_2 are i.i.d Uniform(0,1) random variables. Let random variables Z_1 and Z_2 be defined by

$$Z_1 = \sqrt{-2\log U_1}\cos(2\pi U_2)$$

$$Z_2 = \sqrt{-2\log U_1}\sin(2\pi U_2)$$

(log is the natural logarithm). Find the joint pdf of (Z_1, Z_2) .

4. Suppose that U is a Uniform(0,1) random variable. Find the distribution of

$$X = -\beta \log U.$$

Suppose that an unlimited sequence of Uniform(0,1) random variables is available. Describe how to generate

- (i) a $Gamma(k, \lambda)$ random variable, for integer $k \geq 0$.
- (ii) a realization of a *Poisson process* with rate μ .
- (iii) a $Chisquare(\nu) \equiv Gamma(\frac{\nu}{2}, \frac{1}{2})$ random variable, where ν is a positive, real parameter.
- (iv) a Student(n) random variable, where n is a positive integer parameter.

Use the results from question 3., and results given in lectures and the printed notes.