M2S1 - EXERCISES 4

GENERATING FUNCTIONS AND TRANSFORMATIONS

1. Transformations of Normal random variables.

The continuous random variable Z with range $\mathbb{Z}=\mathbb{R}$ has pdf given by

$$
f_{z}(z)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2} z^{2}\right\} \quad z \in \mathbb{R}
$$

(a) Find the mgf of random variable Z, the pdf and the mgf of random variable X where

$$
X=\mu+\frac{1}{\lambda} Z
$$

for parameters μ and $\lambda>0$.
Find the expectation of X, and the expectation of the function $g(X)$ where $g(x)=e^{x}$.
(b) Suppose now Y is the random variable defined in terms of X by $Y=e^{X} \quad$ Find the pdf of Y, and show that the expectation of Y is

$$
\exp \left\{\mu+\frac{1}{2 \lambda^{2}}\right\}
$$

(c) Finally, let random variable T be defined by $T=Z^{2}$. Find the pdf and mgf of Z.
2. Suppose that random variable X has mgf M_{X} given by

$$
M_{X}(t)=\frac{1}{8} e^{t}+\frac{2}{8} e^{2 t}+\frac{5}{8} e^{3 t}
$$

Find the probability distribution, and the expectation and variance of X (hint: consider G_{X}, and its definition).
3. Suppose that random variable X has mgf given by

$$
M_{X}(t)=\left(1-\theta+\theta e^{t}\right)^{n}
$$

for some θ, where $0 \leq \theta \leq 1$. Obtain a power series expansion for $M_{X}(t)$, and hence identify $\mathrm{E}_{f_{X}}\left[X^{r}\right]$ for $r=1,2,3, \ldots$.
4. Suppose that X is a continuous random variable with pdf

$$
f_{X}(x)=\exp \{-(x+2)\} \quad-2<x<\infty
$$

Find the mgf of X, and hence find the expectation and variance of X.
5. Suppose that X is a random variable with mass function/pdf f_{X} and mgf M_{X}. The cumulant generating function of X, K_{X}, is defined by $K_{X}(t)=\log \left[M_{X}(t)\right]$. Prove that

$$
\frac{d}{d t}\left\{K_{X}(t)\right\}_{t=0}=E_{f_{X}}[X] \quad \frac{d^{2}}{d t^{2}}\left\{K_{X}(t)\right\}_{t=0}=\operatorname{Var}_{f_{X}}[X]
$$

DISCRETE AND CONTINUOUS MULTIVARIATE DISTRIBUTIONS

6. Suppose that X and Y are discrete random variables with joint mass function given by

$$
f_{X, Y}(x, y)=c \frac{2^{x+y}}{x!y!} \quad x, y=0,1,2, \ldots
$$

and zero otherwise, for some constant c. Find the value of c, and the marginal mass functions of X and Y. Prove that X and Y are independent random variables.
7. Continuous random variables X and Y have joint cdf, $F_{X, Y}$ defined for $(x, y) \in \mathbb{R}^{2}$ by

$$
F_{X, Y}(x, y)=\left(1-e^{-x}\right)\left(\frac{1}{2}+\frac{1}{\pi} \tan ^{-1} y\right) \quad x \geq 0
$$

and zero otherwise. Find the joint pdf, $f_{X, Y}$. Are X and Y independent?
8. Suppose that X and Y are continuous random variables with joint pdf given by

$$
f_{X, Y}(x, y)=c x(1-y) \quad 0<x<1,0<y<1
$$

and zero otherwise for some constant c. Are X and Y independent random variables?

Find the value of c., and, for the set $A \equiv\{(x, y): 0<x<y<1\}$, the probability

$$
P[X<Y]=\int_{A} \int f_{X, Y}(x, y) d x d y
$$

9. Suppose that the joint pdf of X and Y is given by

$$
f_{X, Y}(x, y)=24 x y \quad x>0, y>0, x+y<1
$$

and zero otherwise. Find the marginal pdf of X, f_{X}.
Hint: Sketch the region on which the joint density is non-zero; remember that the integrand is only non-zero for some part of the integral range
10. Suppose that X and Y are continuous random variables with joint pdf given by

$$
f_{X, Y}(x, y)=\frac{1}{2 x^{2} y} \quad 1 \leq x<\infty, 1 / x \leq y \leq x
$$

and zero otherwise. Derive the marginal pdf of X, the marginal pdf of Y, the conditional pdf of X given $Y=y$, and the conditional pdf of Y given $X=x$. Calculate the marginal expectation of $Y, E_{f_{Y}}[Y]$.

