M2S1 - EXERCISES 3

CONTINUOUS PROBABILITY DISTRIBUTIONS

1. Show that the function, F_{X}, defined for $x \in \mathbb{R}$ by

$$
F_{X}(x)=c \exp \left\{-e^{-\lambda x}\right\}
$$

is a valid cdf for a continuous random variable X for a specific choice of constant c where parameter $\lambda>0$. Find the pdf, f_{X} associated with this cdf.
Now consider the function $f_{X}(x)=c g(x)$ for some constant $c>0$, with g defined by

$$
g(x)=\frac{|x|}{\left(1+x^{2}\right)^{2}} \quad x \in \mathbb{R}
$$

Show that $f_{X}(x)$ is a valid pdf for a continuous random variable X with range $\mathbb{X}=\mathbb{R}$, and find the cdf, F_{X}, and the expected value of $X, E_{f_{X}}[X]$, associated with this pdf.
2. Let X be a continuous random variable with range $\mathbb{X}=\mathbb{R}^{+}$, pdf f_{X} and $c d f F_{X}$. By writing the expectation in its integral definition form on the left hand side, and changing the order of integration show that

$$
E_{f_{X}}[X]=\int_{0}^{\infty}\left[1-F_{X}(x)\right] d x
$$

Using an identical approach, show also that for integer $r \geq 1$,

$$
E_{f_{X}}\left[X^{r}\right]=\int_{0}^{\infty} r x^{r-1}\left[1-F_{X}(x)\right] d x
$$

Find a similar expression for random variables for which $\mathbb{X}=\mathbb{R}$.
3. (Harder) Suppose that continuous random variables X_{1} and X_{2} both with range $\mathbb{X}=\mathbb{R}^{+}$have pdfs f_{1} and f_{2} respectively such that

$$
\begin{array}{ll}
f_{1}(x)=c x^{-1} \exp \left\{-(\log (x))^{2} / 2\right\} & x>0 \\
f_{2}(x)=f_{1}(x)[1+\sin (2 \pi \log x)] & x>0
\end{array}
$$

and $f_{1}(x)=f_{2}(x)=0$ for $x \leq 0$. If, for $r=1,2, \ldots, E_{f_{1}}\left[X_{1}^{r}\right]=\exp \left\{r^{2} / 2\right\}$, show that

$$
E_{f_{2}}\left[X_{2}^{r}\right]=\exp \left\{r^{2} / 2\right\}
$$

Hint: write out the integral for $E_{f_{2}}\left[X_{2}^{r}\right]$, and then make a transformation $t=\log (x)$ in the integral. Then complete the square.
4. Suppose that X is a continuous random variable with range \mathbb{R} and pdf given by

$$
f_{X}(x)=\alpha^{2} x \exp \{-\alpha x\} \quad x \geq 0
$$

and zero otherwise, for parameter $\alpha>0$.
(i) Find the cdf of X, F_{X}, and hence show that, for any positive value m,

$$
P[X \geq m]=(1+\alpha m) \exp \{-\alpha m\}
$$

(ii) Find $E_{f_{X}}[X]$. If the expected value of X is increased to $2 / \beta$ (for $0<\beta<\alpha$), find the associated change in $P[X \geq m]$.
5. Suppose that X is a continuous random variable with density function given by

$$
f_{X}(x)=4 x^{3} \quad 0<x<1
$$

and zero otherwise. Find the density functions of the following random variables
(a) $\quad Y=X^{4}$
(b) $W=e^{X}$
(c) $Z=\log X$
(d) $U=(X-0.5)^{2}$

Find the monotonic decreasing function H such that the random variable V, defined by $V=H(X)$, has a density function that is constant on the interval $(0,1)$, and zero otherwise.
6. The measured radius of a circle, R, is a continuous random variable with density function given by

$$
f_{R}(r)=6 r(1-r) \quad 0<r<1
$$

and zero otherwise. Find the density functions of the circumference and the area of the circle.
7. (Harder) Suppose that X is a continuous random variable with density function given by

$$
f_{X}(x)=\frac{\alpha}{\beta}\left(1+\frac{x}{\beta}\right)^{-(\alpha+1)} \quad x>0
$$

for constants $\alpha, \beta>0$, and zero otherwise. Find the density function and cdf of the random variable defined by $Y=\log X$, and the density function of the random variable defined by $Z=\xi+\theta Y$.

