M2S1 - ASSESSED COURSEWORK 2

To be handed in no later than Friday, 26th November, 12.00pm.
Please hand in to the Mathematics General Office as dictated by Departmental regulations.

1. Let the joint density for random variables X and Y be defined by

$$
f_{X, Y}(x, y)=c(1-y) \quad 0<x<y<1
$$

and zero otherwise, for some constant c.
(a) Find c.
(b) Evaluate $E_{f_{X}}[X]$ and $E_{f_{X}}\left[X^{2}\right]$, and hence evaluate $\operatorname{Var}_{f_{X}}[X]$.
[3 MARKS]
(c) Derive the conditional density, $f_{Y \mid X}(y \mid x)$, and the conditional expectation

$$
E[(1-Y) \mid X=x] .
$$

for general $x, 0<x<1$. Hence or otherwise, evaluate $E_{f_{Y}}[Y]$ and $\operatorname{Cov}_{f_{X, Y}}[X, Y]$
[3 MARKS]
(d) Evaluate $P[Y<2 X]$.
2. (a) Let the joint density for random variables U and V be defined by

$$
f_{U, V}(u, v)=\frac{3}{2} u^{2}(1-|v|) \quad-1<u<1,-1<v<1
$$

and zero otherwise.
(i) Are U and V independent? Justify your answer.
(ii) Let

$$
A \equiv\{(u, v): 0<u<1,0<v<u\} .
$$

Compute $P[(U, V) \in A]$
(b) Let the joint density for random variables R and S be defined by

$$
f_{R, S}(r, s)=2 r \quad 0<r<1,0<s<1
$$

and zero otherwise. Find the probability

$$
P\left[R^{2}<S<R\right] .
$$

PLEASE SHOW ALL WORKING. YOU MAY NOT USE MAPLE.

