M2S1 - ASSESSED COURSEWORK 1

To be handed in no later than Wednesday, 3rd November, 12.00pm.

Please hand in to the Mathematics General Office as dictated by Departmental regulations.

1. The location of a particle in a two dimensional lattice extending over the set

$$\mathbb{X} \equiv \{(x, y) : x = 0, 1, 2, 3, \dots, y = 0, 1, 2, 3, \dots\}$$

is a discrete random variable. The probability that the particle is at location (x, y) is given by

$$\frac{c(\gamma,\phi)\gamma^x}{x!\phi^y} \qquad x = 0, 1, 2, 3, \dots, y = 0, 1, 2, 3, \dots$$

where $c(\gamma, \phi)$ is a constant that does not depend on x or y, for parameters $\gamma > 0$ and $\phi > 1$. The units of the lattice are taken to be 10^{-9} metres.

- (a) Find the value of constant $c(\gamma, \phi)$, as a function of the two parameters.
- (b) Find the probability that the particle is at (1,1), if $\gamma = 1$, and $\phi = 3$.
- (c) Find the probability that the particle lies on the line y = 1, if $\gamma = 1$ and $\phi = 3$.

[3 MARKS]

[3 MARKS]

[3 MARKS]

[2 MARKS]

(d) Find the probability that the particle is further than 2 units (i.e. $2 \times 10^{-9}m$) away from (0,0) in any direction, if $\gamma = 1$ and $\phi = 3$.

2. Suppose that X is a continuous random variable with range \mathbb{R} and cdf given by

$$F_X(x) = \frac{c(\mu, \sigma, \alpha)}{\left\{1 + \exp\left\{-\left(\frac{x-\mu}{\sigma}\right)\right\}\right\}^{\alpha}} \qquad -\infty < x < \infty$$

and zero otherwise, where c is a normalizing constant that may depend on the three parameters μ, σ, α , where $-\infty < \mu < \infty, \sigma > 0$, and $\alpha > 0$.

(a) Find $c(\mu, \sigma, \alpha)$.

[2 MARKS]

[2 MARKS]

(b) Find the probability density function, f_X , of X.

(c) Find the value of x, x_M , for which $F_X(x_M) = 0.5$. Is f_X symmetric about x_M ? Justify your answer.

[2 MARKS]

(d) Find the range \mathbb{Y} , cdf F_Y , and pdf f_Y of transformed random variable

$$Y = F_X(X).$$

[4 MARKS]

PLEASE SHOW ALL WORKING. YOU MAY NOT USE MAPLE.