M2S1 - ASSESSED COURSEWORK 1

To be handed in no later than Wednesday, 3rd November, 12.00pm.
Please hand in to the Mathematics General Office as dictated by Departmental regulations.

1. The location of a particle in a two dimensional lattice extending over the set

$$
\mathbb{X} \equiv\{(x, y): x=0,1,2,3, \ldots, y=0,1,2,3, \ldots\}
$$

is a discrete random variable. The probability that the particle is at location (x, y) is given by

$$
\frac{c(\gamma, \phi) \gamma^{x}}{x!\phi^{y}} \quad x=0,1,2,3, \ldots, y=0,1,2,3, \ldots
$$

where $c(\gamma, \phi)$ is a constant that does not depend on x or y, for parameters $\gamma>0$ and $\phi>1$. The units of the lattice are taken to be 10^{-9} metres.
(a) Find the value of constant $c(\gamma, \phi)$, as a function of the two parameters.
[3 MARKS]
(b) Find the probability that the particle is at (1, 1), if $\gamma=1$, and $\phi=3$.
[2 MARKS]
(c) Find the probability that the particle lies on the line $y=1$, if $\gamma=1$ and $\phi=3$.
[3 MARKS]
(d) Find the probability that the particle is further than 2 units (i.e. $2 \times 10^{-9} \mathrm{~m}$) away from $(0,0)$ in any direction, if $\gamma=1$ and $\phi=3$.
[3 MARKS]
2. Suppose that X is a continuous random variable with range \mathbb{R} and cdf given by

$$
F_{X}(x)=\frac{c(\mu, \sigma, \alpha)}{\left\{1+\exp \left\{-\left(\frac{x-\mu}{\sigma}\right)\right\}\right\}^{\alpha}} \quad-\infty<x<\infty
$$

and zero otherwise, where c is a normalizing constant that may depend on the three parameters μ, σ, α, where $-\infty<\mu<\infty, \sigma>0$, and $\alpha>0$.
(a) Find $c(\mu, \sigma, \alpha)$.
[2 MARKS]
(b) Find the probability density function, f_{X}, of X.
[2 MARKS]
(c) Find the value of x, x_{M}, for which $F_{X}\left(x_{M}\right)=0.5$. Is f_{X} symmetric about x_{M} ? Justify your answer.
[2 MARKS]
(d) Find the range \mathbb{Y}, cdf F_{Y}, and pdf f_{Y} of transformed random variable

$$
Y=F_{X}(X)
$$

[4 MARKS]

PLEASE SHOW ALL WORKING. YOU MAY NOT USE MAPLE.

