M2S1 : EXERCISE SHEET 4 : SOLUTIONS

1. Using this result for the given joint density, where random variables X, Y take values on the unit square, we
have the marginal of U given by

fu(u) = /o:ofx,y(v,u/vﬂvl dv = /ulc(oc,,@) v 11 =)7L c(a+ B,7) (%)(Hﬂﬂ (1 - E)7‘71 v dv

v

as we have the density being positive only on the interval u < v < 1 for fixed 0 < u < 1, as XY < X. Then

folu) = /ulc(oz,ﬁ) w11 = )51 e(a+ B,7) (%)‘”‘H (1- E)”’l 1o

v

1

= c(a, B)c(a —|—6,fy)/ (%)a_l (1 - %)ﬁ_l tetB=l( — ¢t % t% dt (t =u/v)

u

S+ u

I (e R R R P,

1—u
~ o et o) [ (
1-u
= C(aaﬂ)c(a + 5;7)/ uailsﬁil(l - U)Wﬁl ds
0

= c(a, B)c(a + ,6,7)/0 u"‘_lrﬁ_l(l — u)’@_l(l —u) M1 =) (1 —w) dr (r=s/(1—-u))

1
= c(a, B)e(a+ B, y)u*1(1 — u)ﬁ+w—1/ P11 = 1 dr
0

= c(a, B)e(a + B, y)u* (1 — u)P+r—1 =cla,f+YuT 1 —w)H T 0<u<1

c(B,7)

2. To compute the covariance need first the marginal expectations of X and Y. The key part of the solution is
to realize that the support of the joint density is

O<r<ll<y<l0<z+y<l1

that is, the “lower left corner” triangle of the unit square, bounded by the three lines z = 0,y = 0,z +y = 1.
Now, for 0 < z < 1,

o0 1—z 11—z
fx(z) = [ Ifxy(z,y) dy = /0 cxy(l—x—y) dy = cw/o y(1—z—y) dy

= cx(l — :13)3/0 t(1—t)ydt (t=y/(1-2x))

:gx(l—x)?’ 0<z<l1

and - )
/ fx(2) dx:/ gx(l—x)3 dr =1=¢=120
—0o0 0

and hence

1
fx(x) =20z(1-2)* O<z<1 SEn [ X :/ 202%(1 — 2)3 do = %
0
1
and, by symmetry, fy(y) =20y(1 -y)® (0 <y <1), B[V ]= 3
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by symmetry. Also

0 0 1 11—y
Erey[XY] = / / vy fxy (2,y) dudy = / { / 120022(1 — & — ) dw}dy
oo oo o WJo

1 1—y
:/ 120y {/ 22(1—x—y) dx} dy
0 0

1 3 41—y
= [ 1202 | T 1y - L d
/0 Y {3( y) 4]0 y

1
=/ 10y*(1 —y)* dy

0
3 5 6 711
Y 4 6y 4y Y 1 6 2 1 2
=1 — —_— - =1 ——1 - — = — e
0[3 y+5 6+7]0 O( + 3+

and hence
COVfX,Y[X’Y]:EfX,Y[XY]_EfX[X]'EfY[Y]: -

3. Put U = X/Y and Z = X; the inverse transformations are therefore X = Z and Y = Z/U, and note that
the new variables are constrained by 0 < Z < min{U, 1}, as Y < 1. In terms of the multivariate transformation
theorem, we have transformation functions defined by

g1(t1,t2) =t1/t2 gfl(t1,t2)=t2

g2(t1,t2) =t g3 '(t1,t2) = ta/ta
and the Jacobian of the transformation is given by

0 1 .
J(u,z) = ==
—z/u? 1/u

and hence
fuz(u,2) = fxy(z,z/u) z/u* = z/u? (u,2) € UP = {(u,2): 0 < z < min {u,1} ,u > 0}
and zero otherwise, and so

(min {u, 1})?

202 u > 0.

00 min{u,1}
fo(uw) :/ fu,z(u,z) dz :/ z/u2 dz =
oo 0

Put V = —log(XY) and Z = — log X; the inverse transformations are therefore X = e=% and Y = e~ (*=*) and
note that 0 < Z < V. In terms of the theorem, we have transformation functions defined by

g1(t1,t2) = —log(t1t2) g1 (1, t2) = e 2
g2(t1,t2) = —logty g2 ' (t1,ty) = =17
and the Jacobian of the transformation is given by

0 —e %
J(v,z) = =e?

Cem(v=2)  o—(v-2)

M2S51 EXERCISES 4 SOLUTIONS: page 2 of 8



and hence

fV,Z(Uaz) - fX,y(e_z,e_(”—z)) eV = eV

and zero otherwise, and so

(0,2) e V® = {(v,2) : 0 <z < v < o0}

fv(v) = / fvz(v,z) dz = / eV dz=wve " v >0
—o0 0

and zero otherwise. Note that we can attempt the joint transformation by setting

U=X/Y
V = —log(XY)

X = Ul/Qer/Q
Y = U71/267V/2

note that, as X and Y lie in (0,1) we have XY < X/Y and XY < Y/X, giving constraints eV < U and
eV < 1/U, so that 0 < e™V < min {U,1/U}. The Jacobian of the transformation is

u—l/Qe—v/Q 1/26—1)/2
2 2
J(u,v) = =u le 7?2
U_3/2€_U/2 u—1/2€—v/2
2 2
Hence
fov(u,v) =ute /2 0<e ¥ <min{u,1/u}, u>0
The corresponding marginals are given below: let g(y) = — log(min {u,1/u}), then
o eV e V] min {u,1/u
fu(u) =/ fov(u,v) dU:/ 5 = [—2—} = % u>0
—oc0 g(y) < U lg(y) v
o' e’ o 1
fv(v) = /_OOfU,V(U,U) du = /eﬂ' e2u du = [ o;gue_v] . =ve "’ v>0
Now let
Y+ Y
Y = X1+ Xz Xi=—%5—
—
Z=X1— X5 X2:Y1;Y2

and the Jacobian of the transformation is 1/2. The transformed variables take values on the square A with corners
at (0,0), (1,1), (0,2) and (1,—1) bounded by the lines z=1+4+y,z2=1—y, z=—-1+y and z = —1 —y. Then

fY,Z(yvz) = 1

2

and zero otherwise (hint: sketch the square A). Hence

fa(z) = /_ T fya(yz) dy

4. The transformations are

Vi
YTX X 1 X
Xy
Yo=— 1
2T X X+ X

Y3 =X1+ Xo+ X3

<~

242

.
-

(y,2) € A

1
Edy =14z —1<2<0

1

§dy =1-=z 0<z<l1
X1 =YY;3
X2 =Y5Y3

X3=Y3(1-Y) —Y2)
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which gives Jacobian
Y3 0 Y1

J(y1,y2,y3) = 0 w3 Y2 =3

—ys —y3 (1—y1—y2)
Hence the joint pdf is given by

i ve,vs (U1, ¥2,93) = fxy,x0,x5 (V1Y3: ¥2y3, ¥3(1 — y1 — v2)) T (Y1, y2, ¥3)
= c1yryzexp {—y1ys} cay3ys exp{—yays} cay3(1—y1 —y2)® exp {—y3(1 —v1 — y2)} ¥3

= creaesy1ys (1 — y1 — y2)® 8 exp {—ys} = fri,va (1, ¥2) fra (y3)
where
v ye) <yiys(1—yr —y2)®. and  fyy(ys) o< v exp {—ys}

Hence Y3 ~ Gamma(9,1); the transformations give the constraints 0 < Y7,Y2 < 1 and 0 < Y7 + Y2 < 1, and
Y3 > 0. Now

(¢S] 1—y, 1
fyi (1) = / Friva(yr,y2) dys = / ey (1 -y — yo)® dy = ey (1—y1)° / PO—tPdt (t=yo/(1—p1))
—0o0 0 0

and hence
Fvi(yn) occyi (1 —y1)® = Y1 ~ Beta(2,7), fv,(y1) = 336y:(1 —v1)° 0<yi <1

and hence
2 2

Efyl[yl}Zng

as the expectation of a Beta(«a, 3) distribution is a/(a + ) from notes.

5. Put U = X/Y and V =Y the inverse transformations are therefore X = UV and Y = V. In terms of the
multivariate transformation theorem, we have transformation functions defined by

gl(tlatQ) = tl/tQ g;l(tl,tg) =t1to

g2(t1,t2) = ta g5 H(t1,t2) =to

and the Jacobian of the transformation is given by

and hence

fov(u,v) = fxy(uw,v) v = (%) exp {—%(uQvQ +v2} |v] (u,v) € R?

and zero otherwise, and so, for any real u,

fU(u) = /OO ny(u,v) dv = /OO (%) exp{—%(u%;? +1}2} ‘1}‘ dv

1 oo 2
= (—) / vexp {—%(1 + u2)} dv integrand is even function
T 0
1 1 2 -
— (;> {_m exp {_%(1 + UQ)H ) by direct integration
-1
(1 +u?)
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Now put T'= X/4/S/v and R = S; the inverse transformations are therefore X =T\/R/v and S = R. In terms
of the multivariate transformation theorem, we have transformation functions from (X, S) — (T, R) defined by

Gi(t1,t2) =t /\/t2/v g1 (t1,t2) = t1/ta /v

g2(t1,t2) = to g5 ' (t1,t2) =to

and the Jacobian of the transformation is given by
_r
Vv

()| = Vi :W§
1
frr(t,r) = fxs (t\/; 7“) \/g = fx (t\/g) fs(r) \/; teR,s e Rt

0
and zero otherwise, and so, for any real ¢,

and hence

fr(t) = [ T raltr) dr

(o] 1/2 2
:/ (%) exp{—;i} c(u)r"/Qle""/Q\/E dr
0 7 v v
1/2 o 2
_ (1 c(v) (v+1)/2—1 r t
= (271') \/D/o r exp 5 1+ » dr
1 1/2 C(V) t2 7(V+1)/2 loe) P t2
_ (L cv) I (v+1)/2-1 _2l 4 . _ I
(27r> \/E<1+u> /0 z exp{ 2} z setting z r(l—&—y)

1\ Y2 c(v) 2\ ~wH/2 1 . .
_ (L v t
(27r> NG (1 + u) T integrand is a pdf

We also see/deduce that fg is a Gamma(v/2,1/2) or Chiquared(v) density, and that the normalizing constant

C(V) iS given by
(] >I//2
C(V) e N AR—

h@FC@J>(IY”( 1

v d v p— v+1)/2
Z - 142
r(3) r(3) HE)
which is the Student(v) density.
6. We have
/ x2 o
fxy (zly) = Q%exp{—%} reR fy(y) :c(u)y"/2 le—vy/2 yeRT

where v is a positive integer, so that X|Y =y ~ N(0,y~') and Y ~ Gamma(v/2,v/2), and the normalizing
constant ¢(v) is given by
(V)II/Q
2

c(v) = >
r(3)

Ixy(x,y) = fxpy(@ly) fv(y) zeR,yeRT

Now, by the chain rule
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and zero otherwise, and so, for any real x,

fela) = / ey dy

_ * Y ny (%)V/Q v/2—1_—vy/2
NP e Y W

v v/2 oo
(2)1, / y(”+1)/2_1exp{—%(u+x2)} dy

integrand o a Gamma pdf

D (42 1\ 1
fx(x) = : <_> (1+ xQ/V)(”+1)/2

which is again the Student(v) density.

Exercises 5 and 6 give the two alternative ways of specifying the Student-t distribution, either as a function of
independent Normal and Gamma,/Chi-squared variables, or as the marginal obtained by “scale-mizing” a Normal
distribution by a Gamma distribution (that is, rather than having a fixed variance 02 = 1/Y ,.we regard Y as a
random variable having a Gamma distribution, so that (X,Y’) have a joint distribution

fxy(z,y) = fx|Y(90|y)fY(y)

from which we calculate fx(z) by integration.
7. Can calculate the mgf for this mass function (the Poisson distribution) as
Mx(t) =exp {A(e' —1)}.

Now, if Z; = (X — A)/v/A, we use the mgf result for linear functions, that is if Y = aX + b, Mx (t) = e?* Mx (at).
Here, a = 1/\/X and b= —/\, so

t 12 3
Mgy, (t) :e*ﬁtexp{)\(et/ﬁ—l)} = exp{—\/xtﬁ-)\liﬁ-ﬁ-a-l-m—ﬁ-...]}
12 3 12
—exp —+——=+...p > expl — as A — oo
{5 st e{s)

Zy — Z ~ Normal(0,1) as A — 0o

so therefore

that is, the distribution Z;tends to a standard Normal distribution as A — co. Re-arranging the definition of 77,
and using the transformation result for Normal random variables

X ~ Normal(0,1),Y = aX +b=Y ~ Normal(b,a?)

we have that
X = VAZy + XA ~ Normal(\, \)

Thus we have that
Poisson(\) = Normal(X, \) if A is large
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For second part, can calculate the mgf for this pdf function (the Gamma distribution with parameters A and 1)

. = ()"

Now, if Zy = (X — \)/v/A, we use the mgf result for linear functions, that is if ¥ = aX + b, Mx (t) = e®* Mx (at).
Here, a = 1/\/X and b = —\/X, SO

A
1 t
M) = () —ee{ - (1- )
t 2 t3
=exp{ VA + A | =+ o7 + o= T -
Xp{ L/X 2x 3N ]}
t2 3 2
:exp{5+m+}—>exp{5} as/\—>oo

Zy — Z ~ Normal(0,1) as A — oo

so therefore

that is, the distribution Zstends to a standard Normal distribution as A — co. Re-arranging the definition of Z,
and using the transformation result for Normal random variables as above, we have that

X =VAZy+ XA ~ Normal(\, )
Thus we have that
Gamma(A, 1) =~ Normal(X, \) if A is large
8. If Yo = max { X1, Xo} then P[ Yo > c]=1—p? as

P[Ys<c|=P] max{X;,Xo} <c]=P[(X;<c)N(X2<¢)|=P[ X; <c|P[ Xy < | =p?

9. 1 Yi = min {X1, ..., Xz}, then
Fy,(y1) =P[Yi <y ]|=P[ min{Xy,.., Xz} <1 ]
=1-P[min{Xy,..Xp} > |=1-P[ (X1 >y1)N.. 0 (Xk > 1) ]
=1—P[ (X1 >41) J.P[ (Xg > 1) | =1— (1 = Fx(y1)(1 = Fx(y1)) = 1 = {(1 = Fx(31))}"
Now here, fx(z) = Ae™*%, so Fx(x) =1 — e ** when x > 0, and hence

Fy,(y1) =1—-{(1 - FX(yl))}k =1-{1-(1— e_/\y')}k =1—-e ™M = fy(y1) = ke FW y1 > 0.

In part two, the cdf for X is

1 z—1

Fx(x):/ fX(t)dt:/ltith:1_;: - 1§ZE§OO

Using Result 1 of the Order Statistics section: the joint distribution of the order statistics Y7, ..., Yx derived from

X1,y X is
k

1
Frveyi s o uk) = Kx o (@1, z) = R [ =
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and by Result 2, or by direct calculation as above, the marginal pdfs of minimum Y; and maximum Y} are given
by

~1VN 1 ke — DR
Rt

fY(y)—k{—l}k_l—l——k fY(y)—k{yk
1 (Y&
] n % yichl ' y% Y

Y Yk
with support [1,00) in each case.

10. We have Fx(z) = z, and fx(z) = 1 for 0 < = < 1. Either by direct calculation, or by using the Order
Statistics Result 2, we have

Fy, (y) = {Fx () }" = yf fyvi(yr) = ] {Fx ()}~ {1 = Fx ()} fx (yn) = by ™

E!
o (k—1)
so that
P[Y,>099]=1—-P[Y; <0.99]=1— Fy,(0.99) =1 — (0.99)*
and the smallest k such that 1 — (0.99)* > 0.95 is k = 295.

11. For this pdf, we have cdf Fx(z) = 2°, 0 < x < 1. From elementary calculations, we have that

Fri(y) =1-{1-Fx(u)}' =1-(1-4)"  0<p <l
Therfore, P[ Y; <0.75] =1 — (1 — (0.75)%)*, which takes the values 0.556, 0.662, 0.742 for k = 3,4,5. Also

Fri(p) = k{1 = Fx ()} fx(n) = skyt {1- 3} o<y <1

and
& 0 y1=0
Fy,(p)=1-{1-¢f} =1-(1—-¢))* —
1 y1>1

as k — 00, so that the limiting distribution is a step function, with the step at zero. That is, the limiting
distribution has mass one at Y; = 0.

12. We have that
0<x<o

and using the results for maxima and minima, we have that

Fy.(v) =1—{1—Fx<y>}"=1—{1—(%)““}" 0<o<o

as n — oo with yfixed.

0 y <0
1 y>0

(as the second term is 1 if y = 0, but is zero otherwise) that is, the limiting distribution (cdf) as n — oo is a step
function, with a single step at y = 0. Hence the limiting distribution is degenerate at y = 0, that is, we have Y3
converging in distribution to a discrete random variable Y with P[Y = 0] = 1.

Similarly, for the maximum order statistic,Y,, we have
" Y at+1) " y n(a+1)
Fra(y) = {Fx(v)) {(9) } (5) 0<w<0

_J 0 y<?0 .
_{1 Y>>0 as n — oo with yfixed
(as y/0 is less than 1 if y < @) that is, the limiting distribution (cdf) as n — oo is a step function, with a
single step at y = 6. Hence the limiting distribution is degenerate at y = 6, that is, we have Y, converging in

distribution to a discrete random variable Y with P[Y = 6] = 1.
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