M2S1: EXERCISE SHEET 0: SOLUTIONS

1. For events $A, B \subseteq \Omega$,

$$\omega \in A \cap B \iff \omega \in A \text{ and } \omega \in B \qquad \omega \in A \cup B \iff \omega \in A \text{ or } \omega \in B \text{ or } \omega \in A \cap B$$

Hence

- (i) $\omega \in E \cap \emptyset \iff \omega \in E \text{ and } \omega \in \emptyset$. No such ω exists $\therefore E \cap \emptyset = \emptyset$ $\omega \in E \cup \emptyset \iff \omega \in E \text{ or } \omega \in \emptyset \text{ or } \omega \in E \cap \emptyset \iff \omega \in E \therefore E \cup \Omega = E \text{ (as(} \omega \in E \cap \emptyset = \emptyset \text{).}$
- (ii) $\omega \in E \cap \Omega \iff \omega \in E \text{ and } \omega \in \Omega \iff \omega \in E :: E \cap \Omega = E$ $\omega \in E \cup \Omega \iff \omega \in E \text{ or } \omega \in \Omega \text{ or } \omega \in E \cap \Omega \iff \omega \in \Omega :: E \cup \Omega = \Omega$
- (iii) $(E \cap F) \cup (E' \cup F') = ((E \cap F) \cup E') \cup ((E \cap F) \cup F')$ $= ((E \cup E') \cap (F \cup E')) \cup ((E \cup F') \cap (F \cup F'))$ $= (\Omega \cap (F \cup E')) \cup ((E \cup F') \cap \Omega)$ $= (F \cup E') \cup (E \cup F')$ $= \Omega$

$$(E \cap F) \cup (E' \cup F') = \Omega$$
 so $(E \cap F)' = (E' \cup F')$ and $(E' \cup F')' = (E \cap F)$

Also,
$$(E \cup F)' = (E' \cap F')$$
 (by replacing E and F by E' and F')

(iv)
$$E \subseteq F \Longrightarrow F = E \cup G$$
, say, where $E \cap G = \emptyset \Longrightarrow F' = (E \cup G)' = E' \cap G' \subseteq E'$

(v) If $E \subseteq F$, then $F = E \cup G$, say, where $E \cap G = \emptyset$ so

$$E \cap F = E \cap (E \cup G) = (E \cap E) \cup (E \cap G) = E$$

$$E \cup F = E \cup (E \cup G) = (E \cup G) = F.$$

- 2. An event is a subset of sample outcomes, and the number of subsets of a collection of k items is 2^k (each of the k outcomes can be either included or excluded from the subsets).
- 3. A collection of subsets, \mathcal{A} , of sample space Ω , say

$$\mathcal{A} = \left\{ A_1, A_2, \ldots \right\},\,$$

is a $\sigma\text{-algebra}$ if

- (I) $\Omega \in \mathcal{A}$
- (II) $A \in \mathcal{A} \implies A' \in \mathcal{A}$

(III)
$$A_1, A_2, ... \in \mathcal{A} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$$

Taking these three conditions in turn we attempt to construct a minimal collection \mathcal{A}_0 of subsets that satisfies these conditions. Clearly (I) requires that $\Omega \in \mathcal{A}_0$, and (II) implies that, as $\Omega \in \mathcal{A}_0$, we require $\emptyset \in \mathcal{A}_0$. Now, if $\mathcal{A}_0 = \{\emptyset, \Omega\}$, then it can be verified that (III) holds as

$$\emptyset \cup \Omega = \Omega \in \mathcal{A}_0$$
.

Hence $A_0 = {\emptyset, \Omega}$ is the smallest σ -algebra of subsets of Ω .

4.(i) $\Omega = \{H, T\}$, so the set \mathcal{A} of all subsets of Ω , is

$$\{\emptyset, \{H\}, \{T\}, \{H, T\} = \Omega\},\$$

and it is easy to verify that A is a σ -algebra by checking conditions (I), (II) and (III).

(ii) If Ω is countable, say $\Omega = \{ \omega_1, \omega_2, ..., \}$, let \mathcal{A} be the set of all subsets of Ω . An event A_i is a subset of Ω if $\omega \in A_i \Longrightarrow \omega \in \Omega$, so \mathcal{A} is the set of events A_i that are countable unions of the elements of Ω .

Therefore

- (I) $\Omega \in \mathcal{A}$ by construction.
- (II) $A \in \mathcal{A} \Longrightarrow A' \in \Omega$ (as $A \cup A' = \Omega$, and A and Ω are coutable unions of elements of Ω).
- (III) \mathcal{A} is closed under countable union (as the countable union of countable unions of elements of Ω is itself a coutable unions of elements of Ω).

and hence \mathcal{A} is a σ -algebra.

5.(a)
$$\{A_k\}$$
 forms a partition of $\Omega = \mathbb{R}^+$ as $\omega \in \Omega \Longrightarrow \omega \in A_k$ for precisely one k , and $\bigcup_{k=1}^{\infty} A_k = \Omega$.

Construct σ -algebra \mathcal{A} whose elements are countable unions of the events A_k .

A countable union of elements of the $\{A_k\}$ sequence can be described by an infinite binary sequence in which the kth term is 1 if A_k is in the countable union, and 0 otherwise. It is then straightforward to verify that the conditions (I), (II) and (III).

- (I) consider the infinite binary sequence whose elements are all 1s.
- (II) If $A \in \mathcal{A}$, then $A^{'}$ has an binary sequence representation obtained by switching 1 to 0 and 0 to 1 for each element of the A sequence. Then clearly $A^{'} \in \mathcal{A}$.
- (III) \mathcal{A} is closed under countable union, by considering the binary sequence representation.

and hence \mathcal{A} is a σ -algebra.

(b) Can construct all such intervals by taking unions and intersections of A_i events and their complements, (if we interpret $\{a_i\}$ as the interval $(a_i, a_i]$), as

$$A_{i}^{'} \cap A_{j} = (a_{i}, a_{j}] \qquad a_{i} < a_{j}$$

and

$$[a,b] = (a,b] \cup \{a\}$$
 $[a,b) = [a,b] \cup \{b\}$ $(a,b) = (a,b] \cap \{b\}^{'}$

(ii) Straightforward to verify that conditions (I), (II), and (III) hold using the distributive and De Morgan laws