CHAPTER 6
STATISTICAL ANALYSIS

6.1 STATISTICAL SUMMARIES & SAMPLING DISTRIBUTIONS

Definition 6.1.1 A collection of i.i.d. random variables X7, ..., X, each of which has distribution
defined by cdf Fx (or mass/density function fx) is a random sample of size n from Fx (or fx).

Definition 6.1.2 A function, 7', of a random sample, X1, ..., X,,, that is, T' = (X1, ..., X;,) that
depends only on X7, ..., X,, is a statistic. A statistic is a random variable.
For example, the sample mean X = (X1 + Xa + ... + X,,) /n is a statistic.

Definition 6.1.3 If X1, ..., X,, is a random sample from Fy, say, and T = t(X1, ..., X,,) is a
statistic, then Fr (or fr), the cdf (or mass/density function) of random variable T, is the
sampling distribution of 7.

The objective is to derive the distribution of T from the distribution of X7, ..., X,,.

EXAMPLE: If X1, ..., X, are independent random variables, with X; ~ N (y;,02) for i = 1,...,n,
and aq, ..., a, are constants, consider the distribution of random variable Y defined by

Y = i aiXi
i=1

Using standard mgf results, the distribution of Y is derived to be normal with parameters

n n
— 2 _ 2 2
Ky = E Qi fl; Oy = E ;05 -
i=1 =1
2

Now consider the special case of this result when X1, ..., X, are i.i.d. with y; = p and 0? = 02,
and where a; = 1/n for i = 1,...,n. Then

i=1

2
XZ'=XNN<,LL,U—>
n

S

Definition 6.1.4 For a random sample X1, ..., X, from a probability distribution, then the
sample variances, s> and S?, are statistics defined by

71
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Theorem 6.1.1 Suppose that X1, ..., X,, is a random sample from a normal distribution, say
Xi ~ N(u,0?).  Then

(1) X is independent of {Xi -X,i=1, ,n}
(2) X and s are independent random variables
(3) The random variable

(n_ 1)32 ;()Q —X)Q

o2 o2
has a chi-squared distribution with n — 1 degrees of freedom.

Proof. (1) Sketch: Consider the multivariate transformation to Y1, ..., Y, where

Vi=X Yi=X,-X,i=2.n<=X1=Y1-3Y Xi=Y+V.
i=1

Then f{l,u,Yn W15 Yn) = fYa,.. v (Y2, -, Yn) fr1 (Y1), and therefore Yy i_s independent of Y3, ..., Y.
Hence X is independent of the random variables terms {YZ =X;,—X,1=2,..., n} . Finally, as

— n - - —
Xi—X=-> (Xi —X), X is also independent of X7 — X
i=2

(2) s% is a function only of {Xi - X,i=1,.., n} As X is independent of these variables, X and

s? are also independent.

(3) Can decompose the sums of squares terms that appear in the likelihood as

Z(Xi_ﬂ)2:Z(Xi—X)2+n(X_/~L)2 or  0*Vi =0T+ 0%V
i=1 i=1
say, where the mgfs of Vi, V5 and V3 are

o= (H2)" o= ()" = ()"

so that

Vimxz Va~xiy o Va~d

Theorem 6.1.2 Suppose that X1, ..., X,, is a random sample from a normal distribution, say
X; ~ N(u,0?). Then the random variable

X —p
s/v/n

has a Student-t distribution with n — 1 degrees of freedom.

T =

Proof. Consider the random variables

(n—1)s? 9 Z

A d 2
2 Xn—1 an vV

n—1

Z=ﬁ@§2ﬂ~Nmn V=

and use the properties of the normal distribution and related random variables (NOTE (6), p.
60, section 4.5)
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6.2 HYPOTHESIS TESTING*

Given a sample x1, ..., oy from a probability model fx(x;0) depending on parameter 6, we might
want to test, say, whether or not there is evidence from the sample that true (but unobserved) value
of 0 is not equal to a specified value. We use sampling distributions to quantify this evidence.
We will look at two situations, namely one sample and two sample experiments.

Random Variables Data Models 7
ONE SAMPLE :  Xi,..., X, ~ N(u,0?) x1,...Tn [L=C1,0 = Cy
TWO SAMPLE : X1,..., X, ~ N(ux,0%) T1, Ty iy = [y, 0X = Oy
Y1,... Yo ~ N(py, 0%) Y1, ---Yn

6.2.1 TESTS FOR NORMAL DATA I - THE Z-TEST (¢ KNOWN)

Recall that, if X1,...,X,, ~ N(u,0?) are the i.i.d. outcome random variables of n experimental
trials, then

n

2 2
XN (u/’—) and 252

with X and S? statistically independent. Suppose we want to test the hypothesis that p = ¢, for
some specified constant ¢, (where, for example, ¢ = 20.0) is a plausible model; more specifically, we
want to test

Hy : p=c the NULL hypothesis
H : u#c the ALTERNATIVE hypothesis

Specifically, we want to test whether Hy is true, or whether Hj is true. Now, we know that, in the
case of a Normal sample, the distribution of the estimator X is Normal, and

= o? X —pu
where Z is a random variable. Now, when we have observed the data sample, we can calculate
Z, and therefore we have a way of testing whether u = ¢ is a plausible model; we calculate
T —c
o/
If Hy is true, and p = ¢, then the observed z should be an observation from an N(0,1) distribution

(as Z ~ N(0,1)), that is, it should be near zero with high probability. In fact, z should lie between
-1.96 and 1.96 with probability 1 — a = 0.95, say, as

P[-1.96 < Z < 1.96] = ®(1.96) — ®(—1.96) = 0.975 — 0.025 = 0.95

z =

If we observe z to be outside of this range, then there is evidence that Hy is not true.

Alternatively, we could calculate the probability p of observing a z value that is more extreme
than the z we did observe; this probability is given by

p=2®(=|2])

If p is very small, say p < a = 0.05, then there is evidence that Hy is not true. In summary, if z
is a surprising observation from an N(0, 1) distribution then we can reject Hy.
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6.2.2 HYPOTHESIS TESTING TERMINOLOGY
There are five crucial components to a hypothesis test, namely
e TEST STATISTIC
e NULL DISTRIBUTION
e SIGNIFICANCE LEVEL, denoted «
e P-VALUE, denoted p.
e CRITICAL VALUE(S)
In the Normal example given above, we have that

z is the test statistic
The distribution of random variable Z if Hy is true is the null distribution

a = 0.05 is the significance level of the test (we could use a = 0.01 if we require a “stronger”
test).

p is the p-value of the test statistic under the null distribution
The solution Cr of ®(Cgr) =1—a/2 (Cr = 1.96 above) gives the critical values of the test £Cp.

6.2.3 TESTS FOR NORMAL DATA II - THE T-TEST ( 0 UNKNOWN)

If the variance 02 is unknown, we proceed as follows; the sampling distributions of X and s? are

known from Theorem 6.1.1, and that the two estimators are statistically independent. Now, from
the properties of the Normal distribution, if we have independent random variables Z ~ N(0,1)
and Y ~ x2, then we know that random variable T defined by

Z

VY /v

has a Student-t distribution with v degrees of freedom. Using this result, and recalling the sampling
distributions of X and s2, we see that

_ (- D?fe _ (X —p)
BNy T N T

and T has a Student-t distribution with n — 1 degrees of freedom, denoted St(n — 1). Thus we can
repeat the procedure used in the o known case, but use the sampling distribution of T" rather than
that of Z to assess whether the test statistic is “surprising” or not. Specifically, we calculate

_(@-p

s/\/n
and find the critical values for a a = 0.05 significance test by finding the ordinates corresponding
to the 0.025 and 0.975 percentiles of a Student-t distribution, St(n — 1) (rather than a N(0,1))

distribution. Finally, we can calculate the probability p of observing a T' that is more extreme
than the ¢t we did observe; this probability is given by

P =2Fs1n—1)(—[t])

If p is very small, say p < o = 0.05, then, again, there is evidence that Hy is not true.

t
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6.2.4 TESTS FOR NORMAL DATA III - TESTING o

The Z-test and T-test are both tests for the parameter p. Suppose that we wish to test a hypothesis
about o, for example

Hy : o?=c¢
H, : o*+#c

2

We construct a test based on the estimate of variance, s*. In particular, we saw from Theorem

6.1.1 that the random variable @), defined by

(n—1)s?

_ 2
Q - 0_2 Xn—1

if the data have an N(u,0?) distribution. Hence if we define test statistic ¢ by

(n—1)s?

q:

then we can compare g with the critical values derived from a x2_; distribution; we look for the
0.025 and 0.975 quantiles - note that the Chi-squared distribution is not symmetric, so we need
two distinct critical values

Cr, = Fy2 (0.025) Cr, = Fyz (0.975)

If ¢ is a surprising observation from a x2_; distribution, and we cannot reject Hy.

6.2.5 TWO SAMPLE TESTS

It is straightforward to extend the ideas from the previous sections to two sample situations where
we wish to compare the distributions underlying two data samples. Typically, we consider sample
one, T, ..., Tn,, from a N(uy, (TAQX) distribution, and sample two, y1, ..., Yn, , independently from a
N(py, (r%) distribution, and test the equality of the parameters in the two models. Suppose that
the sample mean and sample variance for samples one and two are denoted (7, s%) and (7,s%)
respectively.

First, consider testing the hypothesis

Ho @ px =py
Hy : px #py

when o x = oy = ¢ is known. Now, we have from the sampling distributions theorem we have
2 2 2 2
nx ny

and hence
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giving us a test statistic z defined by

-y
z =
1 1
oy)— +—
nx = ny

which we can compare with the standard normal distribution; if z is a surprising observation from
N(0,1), and lies outside of the critical region, then we can reject Hy. This procedure is the Two
Sample Z-Test.

If ox = oy = o is unknown, we parallel the one sample T-test by replacing ¢ by an estimate
in the two sample Z-test. First, we obtain an estimate of o by “pooling” the two samples; our
estimate is the pooled estimate, 3%,, defined by

(nx —1)sk + (ny — 1)s}
nx +ny —2

53 =

which we then use to form the test statistic ¢ defined by
-y

/1 1
Spy/— +—
nx Ny

It can be shown that, if Hy is true then ¢ should be an observation from a Student-¢ distribution
with nx + ny — 2 degrees of freedom. Hence we can derive the critical values from the tables of
the Student-t distribution.

t =

If ox # oy, but both parameters are known, we can use a similar approach to the one above to
derive test statistic z defined by

z—y
2 2
g g
X_~__Y

nx ny

which has an N(0,1) distribution if Hy is true.

Clearly, the choice of test depends on whether o x = oy or otherwise; we may test this hypothesis
formally; to test

H(] 00X =0y
H1 e 75 oy
we compute the test statistic

_ sk

q= s%
which has a null distribution known as the Fisher or F distribution with (nx —1,ny — 1) degrees
of freedom; this distribution can be denoted F(nx — 1,ny — 1), and its quantiles are tabulated.
Hence we can look up the 0.025 and 0.975 quantiles of this distribution (the F' distribution is not
symmetric), and hence define the critical region; informally, if the test statistic ¢ is very small
or very large, then it is a surprising observation from the F' distribution and hence we reject the

hypothesis of equal variances.
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6.2.6 CONFIDENCE INTERVALS

The procedures above allow us to test specific hypothesis about the parameters of probability
models. We may complement such tests by reporting a confidence interval, which is an interval
in which we believe the “true” parameter lies with high probability. Essentially, we use the sampling
distribution to derive such intervals.

For example, in a one sample Z-test, we saw that

_X-p
Z_U/\/ﬁ N(0,1)

that is, that, for critical values +Cp in the test at the 5% Significance level
X—p
a/\/n

Now, from tables we have Cr = 1.96, so re-arranging this expression we obtain

P[—CRSZSCR}:P{—CRS SCR:|:0.95

_ o — o
PlX—-196-2 <pu<X+196-"2|=0.
96ﬁ_u_ + 96\/7_1] 0.95

from which we deduce a 95 % Confidence Interval for p based on the sample mean Z of

Z+1.96—=
n

7

We can derive other confidence intervals (corresponding to different significance levels in the equiv-
alent tests) by looking up the appropriate values of the critical values. The general approach for
construction of confidence interval for generic parameter 8 proceeds as follows. From the modelling
assumptions, we derive a pivotal quantity, that is, a statistic, Tpg, say, (usually the test statistic
random variable) that depends on 6, but whose sampling distribution is “parameter-free” (that is,
does not depend on ). We then look up the critical values Cr, and Cpg,, such that

P[CngTPQSCRQ]:l—Oé

where « is the significance level of the corresponding test. We then rearrange this expression to
the form

Pley<f<el=1-«

where ¢; and ¢y are functions of Cg, and Cpg, respectively. Then a 1 —a % Confidence Interval for
0 is [c1, ca).

HYPOTHESIS TESTING SUMMARY

In general, to test a hypothesis, consider a statistic calculated from the sample data. Derive
the probability distribution of the statistic when the hypothesis is true, and compare the actual
value of the statistic with the hypothetical probability distribution. Assess whether the value is a
likely observation from this probability distribution. If it is not, then reject the hypothesis.
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6.3 ESTIMATION

Definition 6.3.1 Let X1, ..., X,, be a random sample from a distribution with mass/density
function fx that depends on (possibly vector) parameter 6, that is, fx, (x1) = fx(x1;6), so that

k

fxox (X150, ) = fo(xi; 0)

i=1

then a statistic T' = ¢(X1, ..., X;,) that is used to represent a function 7(6) of 6 based on the
sample 1, ..., T, is an estimator, and t = t(z1, ..., x,) is an estimate, 7(0), of 7(0).

6.3.1 ESTIMATION TECHNIQUES I: METHOD OF MOMENTS

Suppose that Xji,...,X,, is a random sample from a probability distribution with mass/density
function fx that depends on vector parameter 6 of dimension k, and suppose that a sample z1, ...,
has been observed. Let the jth moment of fx be denoted p;, and let the jth sample moment be
denoted m; for j =1,...,k. Then

n n
1 - . . 1 j . . '
mj = — g x] is an estimate of M; = — E X7 is an estimator of pu;
n n J

i=1 i=1

Interpretation : This method of estimation involves matching the theoretical moments to the
sample moments, giving (in most cases) k equations in the k elements of vector # which may be
solved simultaneously to find the parameter estimates. Intuitively, and recalling the Weak Law of
Large Numbers, it is reasonable to suppose that there is a close relationship between the theoretical
properties of a probability distribution, and large sample derived estimates; for example, we know
that, for large n, the sample mean converges in probability to the theoretical expectation.

6.3.2 ESTIMATION TECHNIQUES II: MAXIMUM LIKELITHOOD

Definition 6.3.2 Let random variables X1, ..., X,, have joint mass or density function, denoted
fx1....x,, that depends on vector parameter § = (01, ...,0;). Then the joint/mass density function
evaluated at fixed (possibly observed) values of the variables, x1, ..., 2;,, and viewed as a function
of 0 is the likelihood function, L(),

L) = fxi,..x, (21, ..., T3 0)

If X1, ..., X, represents a random sample from joint/mass density function fx
n
L) = [ fx(@::0)
i=1

Definition 6.3.3 Let L(0) be the likelihood function derived from the joint/mass density
function of random variables X1, ..., X,,, where # € © C R*, say, and © is termed the parameter
space. Then for a fixed set of observed values 1, ..., x,, of the variables, the estimate of 6 termed
the maximum likelihood estimate of 6, 9, is defined by

0= 0
arg max L(9)

that is, the value of 6 for which L(#) is maximized in the parameter space O.
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Interpretation : This method of estimation involves finding the value of 6 for which L(0) is
maximized by setting the first partial derivatives of L(f) with respect to 6; equal to zero, for
j =1,...,k, and solving the resulting k simultaneous equations. Suppose a sample x1, ..., T, has
been obtained from a probability model specified by mass or density function fx(x;#) depending on
parameter(s) € lying in parameter space ©. The maximum likelihood estimate (m.l.e.) is produced
as follows;

THE FOUR STEP PROCEDURE

e Write down the likelihood function, L(6).
e Take the natural log of the likelihood, collect terms involving 6.

e Find the value of § € ©, 6, for which log L(0) is maximized, for example by differentiation.
Note that, if parameter space © is a bounded interval, then the maximum likelihood estimate
may lie on the boundary of ©. If the parameter is a k vector, the maximization involves
evaluation of partial derivatives.

e Check that the estimate § obtained in STEP 3 truly corresponds to a maximum in the (log
) likelihood function by inspecting the second derivative of log L(€) with respect to 6. In the
single parameter case, if the second derivative of the log -likelihood is negative at 6 = 0, then
0 is confirmed as the m.lLe. of 0 (other techniques may be used to verify that the likelihood
is maximized at 6).

EXAMPLE Suppose a sample x1, ..., , is modelled by a Poisson distribution with parameter
denoted A, so that

x

fx(x;0) = fx(x;\) = %6_/\ x=0,1,2,...

for some A > 0. To estimate A by maximum likelihood, proceed as follows.

STEP 1 Calculate the likelihood function L(A).

for A€ © = RT.
STEP 2 Calculate the log-likelihood log L(\).

log L(\) = sz log A — n\ — Zlog(a:i!)
=1 i=1

STEP 3 Differentiate log L(A) with respect to A, and equate the derivative to zero to find the
m.l.e..

d " xX; < 1 " _
d—)\{logL(A)}—;X—n—O:)\—E;xi—x
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~

Thus the maximum likelihood estimate of A is A = Z

~

STEP 4 Check that the second derivative of log L(\) with respect to A is negative at A = A.

n
D
2

d — N
d—)\z{logL(/\)}=—1_;2 <0 at A=A

EXAMPLE: The following data record the numbers of domestics accidents observed to occur
per household in one year. For this experiment, the total number of household studied is n = 647

Number of accidents Frequency
0 447

132
42
21
3

2

G W N~

Using the maximum likelihood procedure, the estimate of A if a Poisson model is assumed is

)\ML::z:l xi:(447X0)+(132X1)+(42X624)7+(21X3)+(3X4)+(2X5) 0465
n <

Log-Likelihood Plot for Accident Data

Log-Likelihood
-2000 -1800 -1600 -1400 -1200 -1000 -800 -600

0.0 0.5 1.0 15 2.0
Lambda

Note that, here, the maximum likelihood estimator is of the same form as the method of moments
estimator, that is, Apspr = Ay, = X
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6.4 PROPERTIES OF ESTIMATORS*

Having constructed an estimator using the methods described above, we then seek to assess the
properties of the estimator that might lead us to use it in preference to other estimators.

e INVARIANCE : An estimator, T, is an invariant estimator of parameter @ if, for a function
7(0) of 0, 7(T) is an estimator of 7(0).

e UNBIASEDNESS : An estimator, 7', is an unbiased estimator of function 7(6) of param-
eter 6 if

Efr [T] = 7(0)

where fr is the sampling distribution of T. The bias, b(T'), of an estimator T' of 7(0) is
defined by

o(T) = Eg[T] = 7(0)
and the Mean Squared Error, or MSE, of T is defined by

MSE(T) = E;, [(T - 7(6))%]

e ASYMPTOTIC UNBIASEDNESS A sequence T7,...,Ty, ... of estimators of function
7(0) of parameter # are asymptotically unbiased if,

lim FEy, [T.] = 7(0)

n——aoo

for every 6 € O.

e SIMPLE CONSISTENCY : A sequence Ti,...,T,, ... of estimators of function 7(0) of
parameter §. The sequence of estimators are consistent estimators of 7(#) if, for all € > 0,

lim P[|T, —71(0) <e¢=1

n——-—aoo

for every 0 € O, that is, if
T, 2 7(0)
and T,, converges in probability to 7(0).

e MSE CONSISTENCY : A sequence 11, ..., T, ... of estimators of function 7(#) of param-
eter # are mean squared error consistent if,

lim Ey, [(Tn —7(6))°] =0
for every 6 € ©.

e EFFICIENCY: It is desirable that the sampling distribution of an estimator is concentrated
around the true value of the parameter. For example, if T and 75 are two possible estimators
of a function 7(0) of parameter €, then we would prefer T to 15 if T} is more concentrated
about 7(0) than is T5, that is, if, for all € > 0,

Plr(0) —e<Ti <7(0)+¢€ > Plr(0) —e <Tr < 7(0) + €
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where the left and right hand side depend on the sampling distributions of T} and T5 respec-
tively. Furthermore, if T is an unbiased estimator of 7(6), then the Chebychev Inequality
suggests that

PlT(0) —e<T <7(0) +¢€ > 1~ Vary,[T]/e

for all € > 0, as E, [T] = 7(#). Hence an unbiased estimator whose sampling distribution has
a small variance will be concentrated around 7(6), and thus will be preferable to estimators
with larger variance. If this is true for all possible values of parameter €, then this estimator
might be regarded as the “best” estimator of 7(6).

An unbiased T estimator is more efficient than another estimator 7% if

VanTl [Tﬂ < VanTQ [TQ]

ASYMPTOTIC PROPERTIES OF MLES

It can be shown that, under certain regularity conditions, maximum likelihood estimators have
desirable properties. In particular if 6,, is the maximum likelihood estimator of parameter 6 derived
from a random sample of size n, then

(i) 6, exists and is unique
(ii) 0y, is consistent

(iii) @), is asymptotically normally distributed, that is,

1
nEy, {{3(X ; 9)}2}

0, - N |0

7

where
0
O(w;:0) = 55 {log fx (x;0)}

is the score function, that is, 0, is asymptotically unbiased, and it can be shown that 0,, has
minimum variance in the class of unbiased estimators.



