CHAPTER 3
DISCRETE PROBABILITY DISTRIBUTIONS

3.1 DISCRETE UNIFORM DISTRIBUTION
NOTATION X ~ Uniform(n) RANGE X ={1,2,....,n}

MASS FUNCTION

fX(fﬁ) = T € {1727 ;n}
CDF
Fx(z)== ze{1,2,..,n}
MGF
- ! t[1 — e
Mx(t) =Y e = S Ll ] = %%
rth MOMENT
M) = Zn: retr L — 10 (0) = lzn:g;r
* z=1 n n o
— Ep [X] = MP(0) Ziﬁ _(n+1)
En X7 =MP(0) Z 2 _ (zn +1)
n+1)(n—1
= Var [X] = By [X7) = {By, [X]}" = %

NOTE

We can define a discrete uniform distribution over any finite set of values rather that merely the
integers {1,2,...,n}; in this case, the moments of the distribution will depend on the nature of the
range X, but in the same techniques for calculation of moments, mgf etc. can be used.
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3.2 BERNOULLI DISTRIBUTION
NOTATION X ~ Bernoulli(9) RANGE X ={0,1}

MASS FUNCTION

fx(x)=0*1-0)"* xe{0,1} 0<6<1.

<
!
=

1
Mx(t)=> e“0"(1-0)'"" =1— 0+ 0¢'
z=0

rth MOMENT

MY (1) = e = MP(0) = 0r = B [X] =0, Ep [X2) =0 . Varp, [X] = 6 — 62 = 6(1 — 0)

NOTE The Bernoulli distribution is used for modelling when the outcome of an experiment is
either a “success” or a ‘failure”, where the probability of getting a success is equal to 6.

3.3 BINOMIAL DISTRIBUTION
NOTATION X ~ Bin(n,§) RANGE X = {0,1,2,...,n}

MASS FUNCTION

fx(x) = <Z> *(1—-0)" " x€{0,1,2,....,n} n>0,0<6<1.

<
P!
M

=: 6””( )99” 16" =Zn:(Z) (6e') (1—0)"™" = (1— 0+ 0e")"

z=0

rth MOMENT
No simple general expression for M )(: ) (t), but

MP(t) = nbe (1—6+0e)" " MP (1) = 1) {0V (1= 6+ 0¢')" % + nfe’ (1 — 6+ 0e')"

so that M)((l)(O) = nf and M)((Q)(O) = n(n —1)6% + nd, and thus
Ep [X] = n0Vary, [X] = n(n — 1)0* + nd — n*0* = nd(1 — 0)

NOTES
(1) If Xy, ..., X), are independent and identically distributed (i.i.d.) Bernoulli(f) random variables,
and Y = X + ..., X}, then by the standard result for mgfs,

My (t) = {Mx ()} = (1 — 6+ 6¢")"
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so therefore Y ~ Bin(k,0) because of the uniqueness of mgfs. Thus the binomial distribution is
used to model the total number of successes in a series of independent and identical experiments.

(2) Alternatively, consider sampling without replacement from infinite collection, or sampling with
replacement from a finite collection of objects, a proportion 8 of which are of Type I, and the
remainder are of Type II. If X is the number of Type I objects in a sample of n, X ~ Bin(n,@).

3.4 POISSON DISTRIBUTION
NOTATION X ~ Poisson(\) RANGE X = {0,1,2,..}
MASS FUNCTION

Ix(x) = re€{0,1,2,...} A > 0.

=
)
3

%] _A\T [e ] t\ T
Mx (t) = Zet‘c% = Z ()\;) =e e = exp {x (et -1)}
=0 : =0 :

rth MOMENT
No simple general expression for M )(g ) (t), but

MP ) = At exp {A (e — 1)} MP (t) = (A" exp {A (¢! = 1)} + Aebexp {A (¢! — 1)}
so that M)((l)(O) = X and ]V[)(?)(O) = \? + )\, and thus
Ep [ X] = A [X] =M+ X=X =)
NOTES
(1) If X ~ Bin(n,6), let A =nf. Then
Alet — 1))

n

Mx(t) = (1-60+06e")" = (1 +

>n—>exp{)\(et—1)}

as n — 00, which is the mgf of a Poisson random variable. Therefore, the Poisson distribution
arises as the limiting case of the binomial distribution, when n — 00,0 — 0 with nf = X constant
(that is, for “large” n and “small” 0).

(2) Suppose that X; and X3 are independent, with X ~ Poisson(A1), X2 ~ Poisson(\2), then if
Y = X 4+ Xq, using the general mgf result for independent random variables,

My (t) = Mx, (t)Mx,(t) = exp {1 (¢' = 1) fexp {Az (e = 1)} = exp { (A1 + A2) (¢ = 1)}

so that Y ~ Poisson(A\ + A2). Therefore, the sum of two independent Poisson random variables
also has a Poisson distribution. This result can be extended easily; if X1, ..., X} are independent
random variables with X; ~ Poisson(\;) for i = 1,..., k, then

k k
Y = ZXi — Y ~ Poisson (Z)”)

i=1 i=1
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3.4.1 THE POISSON PROCESS*

Consider an experiment involving events that occur repeatedly in time. Let X (¢) be the random
variable representing the number of events that occur in the interval (0, ], so that X (¢) takes values
0,1,2,.... Suppose that

1. X(0)=0
2. For all 0 < s <t, h > 0, and non-negative integers n and m,
PX(t+h)—X(t)=n|X(s)=m]=P[X(t+h)—X(t) =n]

that is, the numbers of events occurring in disjoint intervals are probabilistically independent.

3. For 6t > 0 small,

PIX(t+6t) — X (t) = 1] = A6t + O(6t)

for some A > 0, where

O(6t)

lim —~2 =
6t£1>0 ot 0

that is, the probability of exactly one event occurring in the small interval (¢,¢ + 6t] is, for small

Ot, proportional to the length of the interval, 6t.
4. For 6t > 0 small,

PIX(t+6t) — X(t) > 2] = O(6t)

or some A > 0, that is, the probability of more than one event occurring in a small interval (¢, ¢+ 6t]
is essentially zero.

Then, if
P,(t) = P[n events occur in (0,t]]

it can be shown that
efAt (/\t)n
nl

(that is, the random variable corresponding to the number of events that occurs in the interval
(0,t] has a Poisson distribution with parameter At.)

Examples : Failures/breakdowns of mechanical components, occurrence of accidents, emission of
particles from radioactive sources etc.
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3.5 GEOMETRIC DISTRIBUTION

NOTATION X ~ Geometric(d) RANGE X ={1,2,...}
MASS FUNCTION

fx(@)=1-0"1forxe{l,2,..} 0<O6<1.

CDF
Fx(z)=1-(1-6)" r=1,2,..
GF
_ tx x—1p t t(x—1 rx—1 __ t t T
rth MOMENT
No simple general expression for M )(: ) (t), but
t fel [1 —e'(1 —0)] [1 t1—-0
MO = — 0 @y A=) L+l - )]
[1—et(1—0)] [1—et(l—06)]
so that M)((l)(O) =1 and M)(?)(O) = 29—}‘9, and thus
1 2—0 1 1-6
erclX]l=5 VanX[X]:T_E: 7
NOTES
(1) If X ~ Geometric(d), then for z,j > 1,
PlX = , X > PlX = ] —0)*ti-1p
PIX = 4jIX >j]= LA =2t X >4 _ PR =atjl_(1-0) =(1-0)""'0 = P[X =a]

PIX > j] PIX > j] (1-6)/
So P[X =z + j|X > j] =P[X = z]. This property is unique (among discrete distributions) to the
geometric distribution, and is called the lack of memory property.
(2) Alternative representations:

fx(x) =¢*71 (1 —¢) r=1,2,3... (thatis, ¢ =1-0)

fX(CL‘)=¢I(1—d)) z=0,1,2,.

(3) The geometric distribution is used to model the number, X, of independent, identical Bernoulli
trials until the first success is obtained. It is a discrete waiting time distribution.
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3.6 NEGATIVE BINOMIAL DISTRIBUTION
NOTATION X ~ NeBi(n, ) RANGE X = {n,n+1,n+2,..}

MASS FUNCTION

Fx(x) = <Z B 1)9”(1 —0)"™  ne{l,2,3,.},0<0<1.

MGF
_OO tx x—1 n _p\r—n _ tnOo x—1 t _ T—n 96t "
Mx(t) —;e <n_1>9 (1—6)""" = (ge') ;<H_1> (ef1—0)" " = {71_6%1_9)
rth MOMENT
No simple general expression for M )(g ) (t), but
fet)" n(fe’)™ [n+e'(1—0)]
M) = MP () =
x (@) [1—et(1—0)""! X' [1—et(1—0)""?
so that
MP(0) = g and M2 (0) = " *(9(21 —9))
and thus
n nn+(1-0) n? n(l-0)

EfX{X} = ) VanX[X} = T - ? = 62

NOTES

(1) If X ~ Bin(n,0), Y ~ NeBi(r,0), then for r <n, P[X > r] =P[Y <n].

(2) The Negative Binomial distribution is used to model the number, X, of independent, identical
Bernoulli trials needed to obtain exactly n successes.

(3) Alternative representation: let Y be the number of failures in a sequence of independent,
identical Bernoulli trials that contains exactly n successes. Then Y = X — n, and hence

n+y—1
n—1

= ( Jora-or e

(4) If X; ~ Geometric(0), for ¢ = 1,...n, are i.i.d. random variables, and Y = X + ... + X,,, then
Y ~ NeBi(n,0) (result immediately follows using mgfs).

(5) If X ~ NeBi(n,0),let n(1—60) =X and Y = X —n. Then

My (t) = e~ My () = {%}n _ {1 + Af_}ﬁ }n e A 1)}

as n — 00, hence the alternate form of the negative binomial distribution tends to the Poisson
distribution as n — oo with n(1 — #) = A constant.
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3.7 HYPERGEOMETRIC DISTRIBUTION

NOTATION X ~ HypGeom(N,R,n) for N > R >n

RANGE X = {max(0,n — N + R), ..., min(n, R)}

MASS FUNCTION
G0

(+)

for z € X, and zero otherwise.

NOTE

(1) The hypergeometric distribution is used as a model for experiments involving sampling without
replacement from a finite population. The mass function for the hypergeometric distribution can
be obtained by using combinatorics/counting techniques. However the form of the mass function
does not lend itself readily to calculation of moments etc..

Consider obtaining the sample of size n by drawing sequentially, and let X; for ¢ = 1,...,n
represent the number of Type I objects obtained on the ith draw (so that X; = 0 or 1). Then
X1, ..., X, are dependent Bernoulli random variables, and

X1 ~ Bernoulli(R/N), X2| X1 = 21 ~ Bernoulli((R — z1) /(N — 1)), ...

Using the successive conditioning, and general results for the expectation and variance, it can be
shown that

Efx [X] = n%

Vary, [X] = n% (1- %) (—%:711)
which are the expectation and variance for a hypergeometric distribution.
(2) As N,R — oo with R/N = f(constant), then

n

PIX =] — < )950(1 — )T,

T

so the distribution tends to a Binomial distribution.
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CHAPTER 4
CONTINUOUS PROBABILITY DISTRIBUTIONS

4.1 CONTINUOUS UNIFORM DISTRIBUTION

NOTATION X ~ Uniform(a,b) RANGE X = [a,b] or (a,b), for a <b
PDF
fx(z) = 1 <z <b
x () = o— a<w
CDF
Fx(.’L')ZZ:Z a<z<b
MGF

rth MOMENT

1 1

b
EfX[XT]: / $Tb_adx= T |:

br—i—l ar—l—l
r 4+ 1_r+ 1}

so therefore

1 [v?—a? (a+0)
— Var =
9 1 [¥-ad (a® + ab + b?) Ix 12
EndX= =2 |75~ 3

4.2 EXPONENTIAL DISTRIBUTION
NOTATION X ~ Exp()\) RANGE X = R+
PDF

fx(x) =X x>0 A > 0.

Fx(z)=1—e x>0

%)
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<
P!
=

ool

M (t) = /
0
rth MOMENT

e e Mdx = )\/ e Atz gy 3 A

fort < A\
0 —t

, rIX . r! 1 2 2 1 1
M)(()(t) =G — M)(()(o) =3 En X] = X’EfX[XQ] == Vars, [X] = reiabviaky
NOTES

(1) Alternative representation uses # = 1/X as the parameter of the distribution.
(2) If X ~ Exp(X), then, for all z,t > 0,

PIX>2+4+t,X >t PX>x+t] e~ Mz+t)
P[X >t T OP[X >t e M

PX >z +tX >t = = e M = P[X > 2]

Thus, for all z,t > 0, P[X > o +t|X > t] =P[X > z] - this is known as the Lack of Memory
Property, and is unique to the exponential distribution amongst continuous distributions.

(3) Suppose that X (t) is a Poisson process with rate parameter A > 0, so that

—At n
e M(At)
PIX(1) =n) = 2
Let X1,..., X, be random variables defined by X; = “time that first event occurs”, and, for i =
2,...,n, X; = “time interval between occurrence of (i — 1)st and ith events”. Then X1,..., X,, are

iid. Ezp(A).
Proof : Xi,...,X,, are i.i.d. because of the assumption 2. underlying the Poisson process. So
consider the distribution of X7; in particular, consider the probability P[X; > z| for z > 0.

The event [X; > z] is equivalent to the event “No events occur in the interval (0,z]”, which has
probability e=**. But

Fx,(x) =P[X; <2]=1-P[X; >2]|=1—-e * = X ~ Exp()\)

(4) The exponential distribution is used to model failure times in continuous time. It is a continuous
waiting time distribution, the continuous analogue of the geometric distribution.

(5) If X ~ Uniform(0,1), and Y = —log(l — X)/\, then Y ~ Exp(\).
(6) If X ~ Exp(\), then Y = X'/ for o > 0 has a (two-parameter) Weibull distribution, and

fr@y) =axy® e y>0
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4.3 GAMMA DISTRIBUTION
NOTATION X ~ Ga(a, 3) RANGE X = R+

PDF

2 e P >0 a, 3> 0.

P =T

and where, for any real number o > 0, the Gamma function, I'(.) is defined by

MGF
Mx(t) = /0 h etm%xa_le_ﬁzdx = Pﬁ(; /0 el (=g, _ rf; ( ;(_O‘t))a = < ﬁfi t>a
rth MOMENT
No simple general expression for M (£), but
M)((l)(t) B fﬁt;ﬂ M)((Q) (t) = ngl_t)lczia
so that M)((l)(O) = 5 and M)(?)(O) = %, and thus
Bpx|=5 ey n-tegl o

NOTES

(1) If X7 ~ Ga(a, B), X2 ~ Ga(az, B) are independent random variables, and Y = X7 + X», then
Y ~ Ga(ag + g, 3) (directly from properties of mgfs).

(2) Ga(1,8) = Exp(D).

(3) If X1,...,Xn ~ Exp(A\) are independent random variables, and Y = X; + ... + X,,, then
Y ~ Ga(n,\) (directly from (1) and (2)).

(4) For a > 0,

INa) = / tole=tdt = [—to‘_le_t]go + / (@ —1)t*2e7tdt = (a — 1)/ t*2e7tdt = (o — 1)T(a — 1)
JO J0 J0
so I'(a) = (o« — 1)T'(a —1). Thus if « = 1,2, ..., then I'(a) = (v — 1)

(5) Special Case : If & = 1,2, ... the Ga(«/2,1/2) distribution is also known as the Chi-squared
distribution with o degrees of freedom
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(6) If X; ~ X?zl and Xp ~ X%Q are independent Chi-squared random variables with n; and ng
degrees of freedom respectively, then random variable F defined as the ratio

g X/m)

(X2/n2)

has an F-distribution with (nq,n2) degrees of freedom.

(7) For events in a Poisson process with rate A, then if X(¢) is the random variable counting the
number of events that occur in the interval [0,¢), then

— At n
X (t) ~ Poisson(\t) P[X(t) =n] = % n=0,1,2,..

Now consider the random variable Y,, that corresponds to the time at which the nth event occurs.
To compute the distribution of Y,, consider first the cdf

Fy, () =P[Y, <t]=1-P[Y, >

But
,>t <= X({t)<n <= X{H)<n-1
and so
Fy,(t) =1—P[Yn>t]=1—P[X(t)§n—1]=1_§P[X(t)=k}zl_n_l _/\tkf')\t)k
— L
(1)

Thus, by differentiation, for ¢ > 0

n—1 n—1
d s \s)k Ak
fra(t) = ds {1 - E %} = - E T [—Ae Ak + ke*“skfl]szt
s=t

as all other terms cancel. Hence, as (n — 1)! =T'(n)

_ A" n—1_—At
fyn(t)—r(n)t e t>0

and hence
Y, ~ Gamma(n, \)

Note that (1) gives a way of computing the Gamma cdf.
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4.4 BETA DISTRIBUTION

NOTATION X ~ Be(a, §) RANGE X = (0,1)
PDF
fx(x) = 11:((2);(?) a=l(] — g)f-1 0<zx<l1 a, 3> 0.
rth MOMENT
Forr=1,2,...,
1 o a .
EpdX) = /oxT 11:((04)1:(?) e O géa)}r(gi Joyz e (1 — 2)Plda
_ T(a+B) T(r+ )T'(B)
L(@)L(B) I(r +a+p)
o« B ala+1)
:EfX[X] _Oz—l—ﬁ EfX{XQ]_(a—Q—ﬁ)(a—i—ﬁ—ﬁ—l)
ala+1) o? af

= VonlXl = e i) @+ @0t FED)

NOTES

(1) The beta distribution arises naturally in the context of order statistics; if X7, ..., X} are i.i.d.
random variables with cdf Fx, say, consider first the random variables Uy, ..., U defined by U; =
Fx(X;) for i = 1,...,k. It can be shown that Uy, ..., Uy are i.i.d. Uniform(0,1) random variables.
Now, consider the order statistics Y7, ..., Yy derived from Uy, ..., Ug; using previous results, it can be
shown that the marginal distribution of the jth order statistic is Be(j,k —j + 1), for j =1, ..., k.

(2) If X1 ~ Ga(ai, ), X2 ~ Ga(az, 3) are independent random variables, and Y = X /(X1 + X»),
then Y ~ Be(a, ag) (using standard multivariate transformation techniques).

(3) Suppose that random variables X and Y have a joint probability distribution such that the
conditional distribution of X, given Y =y for 0 < y < 1, is binomial, Bin(n,y), and the marginal
distribution of Y is beta, Be(a, [3), so that

F(a + 5) yafl

T F _ )81
()T (3) 1-y) 0<y<l.

n T n—x
Then the marginal distribution of X is given by

D(a+8) T(z+a)l(n— 2+ B)
I'(a)I(B) TC(n+a+p)

(3) If « = =1, Be(a, 3) = Uniform(0,1).

e = [ petel v = (") r=0,1,2.n
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4.5 NORMAL DISTRIBUTION

NOTATION X ~ N(y,02) RANGE X = R
PDF
L 2
fX(x):\/Qﬁ7exp{—2 5 ( —,u)} reR pweR o>0.
MGF
My(t) = [e' 2 expl——ti(w—p)?bda
. o2 202

t202
= exp {ut + T}

because the integrand is a pdf, and thus the integral is equal to one.

rth MOMENT
No simple general expression for M )(: ) (t), but

2 2
]V[)((l)(t) = (,u—&—t(TQ)exp{,ut—i—tTU}

@ — (2 2 2 4. 2 t?o?
M’ (t) = (" +2to°p+t7c" +0°)expq put + 5

so that M)((l) (0) = p and ]V[)((Q) (0) = u? + 02, and thus
En[X]=n Vaer[X}:MQ""O’Q_NQ:UQ

NOTES
(1) Special Case : If u = 0, 0 = 1, then X has a Standard or Unit normal distribution. Usually,
the pdf of the unit normal is written ¢(z), and the cdf is written ®(x).

(2)If X ~ N(0,1),and Y = 0 X +pu, then Y ~ N(u,0?). Re-expressing this result, if X ~ N(u, 0?),
and Y = (X — p)/o, then Y ~ N(0,1). (using transformation or mgf techniques)

(3) The Central Limit Theorem Suppose X1, ..., X,, are i.i.d. random variables with mgf Mx,
with Efy [X;] = pu and Vary, [X;] = o2 that is, the mgf and the expectation and variance of the
X;s are specified, but the pdf is not. Let the random variable Z,, be defined by

n
>
=1
Zn = no?
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and let Z,, have mgf Mz . Then, as n — oo,
My, (t) — exp {t2/2}

irrespective of the distribution of the X;s, that is, the distribution of Z,, tends to a unit
normal distribution as n tends to infinity. This theorem will be proved and explained in
Chapter 5, section 5.2.

This results provides a useful means of approximation. For any random variable S, say, where

for independent and identically distributed random variables X1, ..., X,,, the cdf of S can be ap-
proximated as follows: define

>
i=1 o S —np
vVno? vVno?

then by the theorem, and using a univariate transformation

Lp =

Fy(2) = ®(2) = Fg(s) ~ ® (s - nu)

no?

(4) If X ~ N(0,1), and Y = X2, then Y ~ x?, so that the square of a unit normal random variable
has a chi-squared distribution with 1 degree of freedom.

(5) If X ~ N(0,1), and Y ~ N(0,1) are independent random variables, and Z is defined by
Z = X/Y, the Z has a Cauchy distribution

1 1

:%1_"_22 z€R

fz(2)

(6) If X ~ N(0,1), and Y ~ Ga(n/2,1/2) for n = 1,2,... (so that Y ~ x2), are independent
random variables, and T is defined by

X
Y/n

then T" has a Student-t distribution with n degrees of freedom, T' ~ St(n),

n+1
r <T> 1\ /2 42 —(n+1)/2
fT(t):7<_> {HZ} teR

IO

Taking limiting cases of the Student-t distribution

n —s o0 : St(n) — N(0,1) n — 1:St(n) — Cauchy
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4.6 MULTIVARIATE PROBABILITY DISTRIBUTIONS
4.6.1 THE MULTINOMIAL DISTRIBUTION

The multinomial distribution is a multivariate generalization of the binomial distribution. Recall
that the binomial distribution arose from an infinite Urn model with two types of objects being
sampled without replacement. Suppose that the proportion of “Type 1”7 objects in the urn is 6 (so
0 <6 < 1) and hence the proportion of “Type 2” objects in the urn is 1 —6. Suppose that n objects
are sampled, and X is the random variable corresponding to the number of “Type 1”7 objects in
the sample. Then X ~ Bin(n,0), and

Fx(z) = (Z) 01— )"  2e{0,1,2,..,n}

Now consider a generalization; suppose that the Urn contains k + 1 types of objects (k = 1,2, ...),
with 6; being the proportion of Type i objects, for i = 1,....,k + 1. Let X; be the random variable
corresponding to the number of type ¢ objects in a sample of size n, for ¢ = 1, ..., k. Then the joint
distribution of vector X = (X7, ..., Xj) is given by

n! k+1

R s La— y
1V Ve
+ x1loaplepg! 2 !

n!

Ly Uh) =~
Ix1 X0 (@15 0 k) 1l xglrgy!

where 0 < 6; < 1 for all ¢, and 61 + ... + 0 + 0x11 = 1, and where xp;q is defined by xgy1 =
n—(x1 + ... +x). This is the mass function for the multinomial distribution which reduces to the
binomial if £ = 1. It can also be shown that the marginal distribution of X; is Bin(n, 6;).

EXAMPLE A dice is rolled n times; let X; =“total number of 7 scores”. Then X = (X1, ..., X5)
has a multinomial distribution with 8, = 1/6 for i =1, ..., 6.

4.6.2 THE DIRICHLET DISTRIBUTION

The Dirichlet distribution is a multivariate generalization of the beta distribution. Recall that
the beta distribution arose as follows; suppose that V; and V5 are independent Gamma random
variables with V; ~ Ga(au, 3),Va ~ Ga(aa, 3). Then if X is defined by

%1
X =
Vi+Va

we have that X ~ Be(ag,as), and

Flag +ag) o

fx(x) = ml’ 1-2)21<z<1

Now consider a generalization; suppose that Vi, ..., V11 are independent Gamma random variables
with V; ~ Ga(ai,3), for i = 1,...,k + 1. Define

Xi=L
i+ .o+ Vi

for i = 1,...,k. Then the joint distribution of vector X = (X7, ..., X}) is given by

F(Oé) al—1 ak_l.i[‘

T ap1—1
F(al)...F(ak)F(akH) 1 k

k+1

fxuxe (@1, x) =
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for 0 < x; <1 for all ¢ such that 1 + ... + ¢ + 241 = 1, where o = a3 + ... + agy1 and where
Zg41 is defined by xg1 = 1 — (21 + ... + ). This is the density function which reduces to the beta
distribution if £ = 1. It can also be shown that the marginal distribution of X; is Beta(w, @).

EXAMPLE The composition of a mineral sample is determined in terms of percentage compo-
sition of five compounds. Let X; be the percentage content of compound ¢, for ¢ = 1,...4. Then
X = (X1, ...,X4) is a vector random variable whose joint probability structure could be described
using a Dirichlet distribution.

4.6.3 THE MULTIVARIATE NORMAL DISTRIBUTION

The multivariate normal distribution is a multivariate generalization of the normal distribution
which can be generated in the following way. Suppose that X1, ..., X}, are i.i.d. N(0,0?) random
variables. Using vector notation, we can write the joint density function of X, ..., X} as

1\ k2 17
Ixi,x, (@1, ) = <W> eXP{_ﬁX X}

where x = (21, ..., x;). Now consider the multivariate transformation from (X7, ..., Xx) to (Y1, ..., Y%)
(that is, from X to Y) defined by Y = AT X +pu, where A is a k x k invertible matrix of real numbers,
and p is a k x 1 vector. This is a 1-1 transformation, so using the usual multivariate transformation
formula, we can obtain the joint density function of (Y1,...,Y%) as

1\*? 1 1 S
v, yk) = o m—l/gexp —5()’—#) Sy —m)

where ¥ = 0247 A. This is the pdf of the multivariate normal distribution. It can be shown
that any marginal, joint marginal, or conditional distribution of a subset of Y7, ..., Y% is normal or
multivariate normal.
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