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2.7 JOINT PROBABILITY DISTRIBUTIONS

Consider a collection of random variables X7, ..., X§, with X; a function from sample space §2;
to X; € R. Then the vector of random variables X = (X7,..., X}) is a vector function from the
Cartesian product of the sample spaces to X(*)

le...kaHX(k)gXlx...xngRk

The vector random variable X = (X7, ..., X}) could correspond to the outcomes of k different
experiments carried out once, or a single experiment carried out k times.

Definition 2.7.1 JOINT MASS FUNCTION

The joint probability mass function of the £ dimensional discrete random variable, that is,
X = (Xi,..., X)) is denoted fx, . x, and is defined by

lew.’Xk(.CL’l, ,.CL’k) = P[(X1 = .1’1) N...N (Xk = J?k)} = P[Xl =21y, Xk = J?k]
for all possible values of the real vector, x = (21, ...,x) € X (k)

Note: As for the single variable case, the joint mass function must be non-negative for all z € X(*,
and the sum of the joint mass function evaluated for all € X*®) must be 1.

Definition 2.7.2 JOINT DISCRETE CDF

The joint cumulative distribution function of £ dimensional discrete random variable
X = (X1, ...,X}) is denoted FY,, . x, and is defined by for any real vector (x1,...,z5) by

Fx, . .x,(x1,....,o5) = P[X1 <21, ..., X < ap]

Note: The joint cdf must satisfy certain properties (i.e. behaviour for limiting values of x1, ..., )
individually and jointly) analogous to the univariate case.

Definition 2.7.3 MARGINAL MASS FUNCTION

The marginal mass function of random variable X;, denoted fx,, is defined in terms of the
joint mass function fx, . x, for x; € X; by

sz(‘Ti) = Z Z Z fol’m’xk (331, ,J?k)
Xy

Xi—1 X1 X

that is, the summation of joint mass function evaluated at (z1,...,2x) for all values of x; € X; for

j#i.
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Definition 2.7.4 JOINT CONTINUOUS CDF

The joint cumulative distribution function of £ dimensional continuous random variable,
that is, X = (X1, ..., X) is denoted Fx, . x, and is defined for any real vector (x1,...,z%) by

Fx, . .x,(x1,....,o5) = P[X1 <21, ..., X} < ap]

Note: The joint cdf must satisfy certain properties (i.e. behaviour for limiting values of x1, ...,z
individually and jointly) analogous to the univariate case.

Definition 2.7.5 JOINT PDF

The joint probability density function of £ dimensional continuous random variable
(X1, ..., Xj) is denoted fx,, . x,, and is defined in terms of the joint cdf F, . x, for vector
(21, ey 2) € X Dy

"1 T,
FX17“.7Xk(:L'1,...,:L'k) = / / le,.“,Xk(tla---;tk)dtl---dtk
—0 —0

so that

8k
Ix1, X (T15 0, T) = .0 X0 xi (B o) Yy =

Note : As for the single variable case, the joint pdf need not exist, but if it does exist, the joint pdf
must be take non-negative values for all (z1, ...,xx) € X*) | and

/ fX17“~7Xk (.’L’l, RN xk)dxld:nk = 1
. Xl . Xk.

Definition 2.7.6 MARGINAL PDF

The marginal probability density function of random variable X;, denoted fx;, is defined in
terms of the joint pdf fx, . x, for z; € X; by

sz(‘Ti) = / / / le,“.,Xk(l’l,---7l’k)dﬂjl---dﬂ?ifldﬂjﬂrl---dl’k
. Xl . Xi—l . Xi+1 . Xk:

that is, the joint pdf integrated out over the ranges of the remaining k — 1 variables Xj, j # i.

Note In both discrete and continuous cases, the concept of marginalization can be extended from
consideration of the marginal probability distribution of a single variable. For example, consider
the pair of variables (X;, X;) for ¢ # j; the joint marginal mass function/pdf can be obtained
by summation/integration over the remaining k — 2 variables. This can be further extended to
consideration of more than two variables.
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Definition 2.7.7 CONDITIONAL MASS/DENSITY FUNCTION

The conditional probability mass/density function of random variable X;, given that

X1 =,, ---,Xi—l = xi—laXi+1 = Tj+1, ...,Xk = Tk
is denoted
fX.L'|X1,.“,X1',1,Xi+1,.“,Xk7
is defined by

fxu,x (21, o )
Xie1,Xi41, Xk (xl, cees Li—15 L1y +eey -’ﬂk)

in|X1,M,Xi_l,XHl,“.,Xk (CL’i|CL’1, ey 1, Ty 1, ey T) =
fxi,,

if the denominator is strictly positive, that is, the ratio of the (full) joint mass function/pdf
for the k variables X1, ..., X) to the (marginal) joint mass function/pdf for the k — 1 variables
X1,y Xi1,Xit1, ., Xg. The form of the denominator is obtained by summing/integrating the
(full) joint mass function/pdf out over the variable X;.

Note : This definition is directly related to the definition of conditional probability given earlier,
and can be extended to the definition of conditional distribution of two variables, given the values
of the remaining k — 2, and so on.

2.7.1 JOINT DISTRIBUTION SPECIAL CASE: k=2

We consider in detail the case when k = 2; the extension to higher order multivariate distributions
is straightforward. Suppose that X and Y are random variables with ranges X and Y respectively,
so that the vector (X,Y) is a vector random variable with range (contained in)

XxY={(z,y):x€Xand y € Y} CR?

DISCRETE CASE
If X and Y are DISCRETE the joint probability mass function of (X,Y’), denoted fx y, is

fxy(@y)=P(X=2)n(Y =y)] = P[X =2,Y =y

for all possible values of the vector (z,y) € X x Y. The joint cumulative distribution function of
(X,Y), denoted Fy y, is

Fxy(z,y) = P[X <2,Y <y
for any real vector (x,y).

The joint mass function fxy(x,y) essentially specifies a two-way table of probabilities.  For
example, suppose that

X ={1,2,3,4,5,6} Y ={1,2,3,4}
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and let p;y = fx,y(z,y) Then we have the following table

Y 4 pua pos D35 Paa Psa Dea
3 P13 P23 P33 P43 P53 P63
2 pi2 p22 P32 Pa2 P52 P62
1

P11 P21 P31 P41 P51 Peél
1 2 3 4 5 6

X
The relationship between fxy and Fx y is given by

[z] [y]

Fxy(z,y) = ZZfXYtS

t=—00 s=—00
where [z] is the largest value in X not greater than x etc.
PROPERTIES

The axioms of probability automatically require that for a valid probability model, we must
have

PMF 0< fxy(x,y) <1
ZZfX,Y(%y) =1
rzeXyeY

CDF 0 S FX’y(m,y) S 1

lim Fxy(z,y)=0

T——00

lim Fxy(z,y) =0

Yy—>—x

lim Fxy(z,y)=1

T——00,Yy——00
Fx y(z,y) is non-decreasing in both x and y

CONTINUQUS CASE

If X and Y are CONTINUOUS the joint cumulative distribution function (joint cdf) of
(X,Y), denoted Fy y, is

Fxy(z,y) = PX <a,Y <y
for any real vector (z,y). The joint probability distribution function (joint pdf) of (X,Y),
denoted fxy, is

x Y 2
Fxy(z,y) Z/ / fxy(t,s)dsdt < fxy(z,y) = 8(38 {Fxy (t,8) ey amy

for any real vector (z,y). The joint cdf and joint pdf are merely two real-valued functions of two
variables.
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PROPERTIES
The axioms of probability automatically require that for a valid probability model, we must
have

PDF 0< fxy(z,y)
/ / Ifxy(z,y) dedy =1
CDF 0 S FX’y($,y) S 1

lim Fxy(z,y)=0

r—>—00

lim Fxy(z,y) =0

y——

lim Fxy(z,y) =1

T—00,y——00

Fx y(x,y) is non-decreasing in both x and y

In general, we can evaluate probabilities of events of interest by summing/integrating over appro-
priate regions of R?. For example, we may wish to evaluate

P[X +Y <6 Pla < XY <] P[X <Y]
etc. which we can formulate generally as
Pg(X,Y) € B]

for some function g and set B, and then evaluate as

Plg(X,Y)e B] = ./A /fX’y(a:,y) dx dy
where A is the region of R? defined by

A={(z,y): 9(x,y) e B,z e X,y €Y}
For example,

PX<Y]=P[X-Y <0 =/f;/‘fx7y(m‘,y) dz dy

where A={(z,y):z—y <0,z X,y Y}
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MARGINAL DISTRIBUTIONS
The joint probability model expressed though fx y(x,y) or Fx y(x,y) automatically specifies
the probability model for each variable individually.

In the discrete case, the marginal mass function of random variable X, denoted fx, is defined
in terms of fxy for x € X as

fx(@) =" fxy(a,y)
yeyY

that is, the summation of joint mass function evaluated at (z,y) for all values of y € Y. Similarly,
the marginal mass function for Y is

@) =Y fxy(zy).
zeX

Essentially, the marginal distributions are obtained by summing out over the y in column x of
the two-way table for fx(x), and summing out over = in row y for fy(y). These results are a
consequence of the Theorem of Total Probability; that is

fx(x)=P[X =2x] = ZP X =x2,Y =y| = ZfX’y(a:,y).

yeyY yeyY

Note that both fx and fy are themselves probability mass functions, so must behave according to
the rules specified in earlier sections.

In the continuous case, the marginal probability density function of random variable X,
denoted fx, is defined in terms of fxy for z € X by

Ix(z) = /_Oo fxy(x,y) dy

that is, the joint density function integrated out over y for a fized value of x. Similarly, the
marginal probability density function for Y is

fr(y) = /_00 fxy(z,y) dx

Again, both fx and fy are probability density functions, so must satisfy the required properties .

CONDITIONAL PROBABILITY DISTRIBUTIONS
The conditional probability mass/density function of random variable X given that Y =y
is denoted fx|y (z|y) and is defined by

_ fX,Y(ﬂf,y)

(that is, a function of argument x for fixed y) if the denominator is strictly positive, that is,
the ratio of the joint mass function/pdf to the marginal mass/density function for Y. A similar

definition gives the conditional of Y given X = z,

frix(ylz) = @)
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EXAMPLE In the continuous case, with £ = 3, each of the following marginal and conditional
density functions can be computed from the joint density function

x1,%0,%5 (21, 2, 3)
MARGINALS:

Falon) = / /le,XQ,X3($1,x2,m3)d;p2dx3 fxy (2) =//fX17X27X3(x17x27$3)d$1d$3

Xo X3 X1 Xs

Ixs(w3) = / /le,Xg,Xg(fL'l,fL'Q,IL’3)diIJ1d$2

X1 Xo

P (o, 22) = /le’XQ’XS (@1, 22, 23)dws [y x5(21,23) = /fxl,XQ,Xg(m,m,x?,)dm
Xs %

fX27X3($27x3) = /le,XQ,Xg(xl,x27x3)d$1

X1
CONDITIONALS:
T R e A R R
Fxo x5, (2, 23]T1) = fX17X2§1(£17)$27$3)
Papx(ile) Z% P s (@1]s) :%&x?’)
Fxaix (z2l1) Z% Pl (@ls) :%(2;63)
Froixa (eafen) :% Fxolxa (%2|73) Z%(Z’f?’)
Tl = Pns) Prpaaslas) = Pzplazs)

IX0.X0.x5 (71, T2, 73)
fX27X3 (x% m3)

_ Ix1,%0,%5 (1, @2, x3)
le,X3 (:L’l, m3)

fX1|X2,X3(fL'1|IL'27IL'3) fX2|X17X3($2|5L'1,IL'3)

— SX1, X2, 5 (21, T2, T3)

f xr3|T1,T2
X3|X1,X2( | ’ ) le,XQ(xlaan)
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2.7.2 INDEPENDENCE FOR RANDOM VARIABLES

Random variables X1, ...X} are independent if, for a; < b;, ¢ =1, ...k,

k
P[al <X; < bl, v ap < Xk < bk} = I_IP[(IZ <X; < bz}
i=1

More specifically, X1, ...X} are independent if and only if

k k

Fx, o x, (w1, wk) = [ [Fxi (@) or equivalently, fx,, . x, (21, 2x) = [ [ fx: (%)
i=1 i=1

that is, if and only if the joint cdf and the joint mass function/pdf factorizes into the k marginal
cdfs and mass function/pdfs.

SUFFICIENT CONDITIONS FOR INDEPENDENCE
Sufficient conditions for variables X1, ..., Xi to be independent are

(i) the support of the joint mass function/pdf (the region on which the function is strictly positive)
is a Cartesian product, that is,

x®) = Xy X .o x X = {(ml,...,xk) txp € Xq, ., X € Xk} .

(ii) the joint mass function/pdf factorizes into a product of marginal functions.

2.7.3 THE CHAIN RULE FOR RANDOM VARIABLES

There is an explicit relationship between joint, marginal, and conditional mass/density functions.
For example, consider three continuous random variables Xi, X>, X3, with joint pdf fx, x, x,-
Then,

Ix1,%0,%3 (21, 02, 23) = fx,(%1) Fxy 5, (¥2]21) x5 x1, %, (T3]71, 72)

so that, for example,

fx,(x1) = / Ix1,%5,x5 (%1, 02, ¥3)dwodTs
X9 JX3
= //fX1|X2,X3(l’1|3?2,ws)fXQ,Xg(l’2al’3)dl’2d$3
JXo JX3

_ /X/XfX1|X2,X3($1|$2>333)fX2|X3($2|$3)fX3(x3)dx2d$3
2 3

Equivalent relationships hold in the discrete case, can be extended to determine the explicit rela-
tionship between joint, marginal, and conditional mass/density functions for any number of random
variables.

NOTE: the discrete equivalent of this result is a DIRECT consequence of the Theorem of Total
Probability; the event [X; = 1] is partitioned into sub-events [(X; = x1) N (X2 = z2) N (X3 = x3)]
for all possible values of the pair (x2,x3).
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2.7.4 CONDITIONAL EXPECTATION AND ITERATED EXPECTATION

Consider two discrete/continuous random variables X1 and X with joint mass function/pdf fx, x,,
and the conditional mass function/pdf of X; given Xy = x9, defined in the usual way by

. fXLXQ(xl?xQ)
Ixxs (w1]22) = T o (m)

Then the conditional expectation of X; given Xs = x5 is defined by

Z xle1|X2 (:L’1|$2) X1 DISCRETE
:121€X1

EfX1|X2 [X1| X2 = 22] =
/ .’L’le1|X2 (xl\xg)dxl X1 CONTINUOUS
J Xq

i.e. the expectation of X; with respect to the conditional density of X7 given Xs = x9, (possibly
giving a function of z3).

THE LAW OF ITERATED EXPECTATION
THEOREM
For two continuous random variables X; and X5 with joint pdf fx, x,,

EfX1 [Xl] = EfXQ [Efxl|x2 [X1|X2 = ‘732]

PROOF

By, [X1] :/x z1 fx, (z1)dxy

:/ .1’1{ le’XQ(xl,xg)dxg}dxl
J Xq J X

= /.Xlxl {/.XQfXﬂXg(xl‘xQ)sz(xQ)de}

=/ / o1 fxy|x0 (T1|72) fx, (22)dwodry
J X1 J Xo

= /.X {/X $1fX1|X2($1\$2)d$1}fXQ(xz)dxz

= Jx, {EfX1|X2 [(X1] X = wz}} [xo(x2)day = By, [EfXﬂXQ [X1[ X2 = 2]

so the expectation of X; can be calculated by finding the conditional expectation of X; given
X9 = x9, giving a function of x2, and then taking the expectation of this function with respect to
the marginal density for X5. Note that this proof only works if the conditional expectation and
the marginal expectation are finite. This results extends naturally to k variables.
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2.8 MULTIVARIATE TRANSFORMATIONS

THEOREM

Let X = (X1, ..., Xi) be a vector of random variables, with joint mass/density function fx, . x,.
Let Y = (Y1,...,Yx) be a vector of random variables defined by Y; = ¢;(Xi,..., X)) for some
functions g;,7 = 1, ..., k, where the vector function g mapping (X1, ..., Xx) to (Y1,...,Yx) is a 1-1
transformation. Then the joint mass/density function of (Y7, ...,Y%) is given by

DISCRETE v Wi, s Yk) = fxoox (21, -0 Tg)

CONTINUOUS le,“.,Yk (yb 7yk) = le,“.,Xk (xla 7',1"/6) |J(?J1; ;yk)‘

where x = (21, ..., 73) is the unique solution of y = g(x), so that x = g~!(y), and where J(y1, ..., yx)
is the Jacobian, of the transformation, that is, the determinant of the k x k matrix whose (¢, j)th
element is

9 ,
a_tj {91’ (t) }t1:1117~u7tk:yk

where g; ! is the inverse function uniquely defined by X; = g; ' (V1,..., Y3).

PROOF

Discrete case proof follows univariate case precisely. For the continuous case, consider the
equivalent events [X € C] and [Y € D], where D is the image of C' under g. Clearly, P[X €
C] = P[Y € D]. Now, P[X € (] is the k dimensional integral of the joint density fx, . x, over
the set C, and P[Y € D] is the k dimensional integral of the joint density fy,, v, over the set D.
Result follows by changing variables in the first integral from x to y = g(x), and equating the two
integrands.

Note : As for single variable transformations, the ranges of the transformed variables must be
considered carefully.

Example 2.8.1 Consider the case k = 2, and suppose that X; and Xs are independent
continuous random variables with ranges X; = Xy = [0, 1] and pdfs given respectively by

fx (1) =6x1(1—21) 0<az1<1
fxy(22) = 33 0<zy<1
and zero elsewhere. In order to calculate the pdf of random variable Y7 defined
Y1 = X1Xo

using the transformation result, consider the additional random variable Y5, where Y2 = X (note,
as X1 and Xy take values on [0,1], X7 > X1 X9 so Y] <Y3).

The transformation Y = g(X) is then specified by the two functions

g1(t1,t2) = tita g2(t1,t2) =t
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and the inverse transformation X = g=!(Y) (i.e. X in terms of Y) is
X1=Ys Xo=Y1/Ys
giving
g (i te) =t g3 l(th,te) = t1/ta.
Hence

0 B 0 B
8_t1{gl Yt1,t2)} =0 O_tg{gl Yt t2)} =1

0 0
ot {g27 (t1,t2)} = 1/t2 o {927 (t1,t2) } = —t1/13

and so the Jacobian J(y1,y2) of the transformation is given by the modulus of

‘ 0 1
ys —y1/y3

so that J(y1,y2) = 1/y2. Hence, using the theorem

fviya(i,y2) = fxixe (W2, y1/y2) % | (y1,52)]
= 6y2(1 —y2) x 3(y1/y2)* x 1/ya
= 18y7 (1 — y2) /3
on the set Y2 = {(y1,y2) : 0 <y1 <y <1}, and zero otherwise. Hence
Faln) =, 18y3(1 — yo) /y3dys
= 18y} [—1/y2 — logya],,
= 18yF(—1+1/y1 +logy1)
= 18y1(1 —y1 +y1logy1)

for 0 <y <1, and zero otherwise.
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2.9 MULTIVARIATE EXPECTATIONS AND COVARIANCE
2.9.1 EXPECTATION WITH RESPECT TO JOINT DISTRIBUTIONS

Definition 2.9.1 For random variables X7, ..., X} with range X*) with mass/density function
fxi1,...x,, the expectation of g(X7i, ..., X}) is defined in the discrete and continuous cases by

Z Zg(xla sy xk)le,m,Xk (xla 733/6)
X1 T

Efxl Xp, [g(Xlaan)]

.....

/ / 9(x1, s Tr) fxy o x (X1, ey g ) dy . dy,
x, J x,

PROPERTIES
(i) Let g and h be real-valued functions and let @ and b be constants. Then, if fx = fx,,.. x,,

Bty lag(Xa, ooy Xi) + 0h( X1, ..., Xi)] = aEry [9( X1, oy Xi)] + OEp [R(X1, ..., Xi)]-
(ii) Let X1, ... X} be independent random variables with mass functions/pdfs fx,, ..., fx, respec-

tively. Let g1, ..., gx be scalar functions of X, ..., X} respectively (that is, g; is a function of X; only
fori=1,....k). If g(X1,..., Xg) = 1(X1)...9x(Xk), then

k
Efy [9(X1, s Xe)] = [ | Br, [90(X0)]
i=1

where Ey, [gi(X;)] is the marginal expectation of g;(X;) with respect to fx,.

2.9.2 COVARIANCE AND CORRELATION

Definition 2.9.2 The covariance of two random variables X7 and X» is denoted
Covyy «,[X1,Xo], and is defined by

COUfXI,XQ [XlaXQ} = Ejfxl,x2 [(Xl — ) (X2 — MQ)} = Efxl,xg [XlXQ} — Hita

where p; = E, [X;] is the marginal expectation of X;, for ¢ = 1,2, and where

By, x, [ X1X2] =//g(l"hxQ)fXLXz(xth)dxldm

that is, the expectation of function g(x1,x2) = x122 with respect to the joint distribution fx, x,.

Definition 2.9.3 The correlation of X; and X5 is denoted CorerI’X2 (X1, X2], and is defined
by

CO’Ule X [Xl ) XQ}
JVars, XilVary,, [Xa]

Corrypy «, (X1, X5] =

If C’ovfxlx2 [X1,X2] = C’OT‘T‘fXLX2 [X1,X2] = 0. then variables X; and X2 are uncorrelated.
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Note that if random variables X; and X9 are independent then

COUfXI,XQ (X1, Xo] = Efxl,xg [(X1X] — Efxl [Xl}EfXQ [Xo]

= Efxl {Xl}EfXQ [Xa] — Efxl [Xl]EfX2 [(Xo] =0
and so X7 and Xy are also uncorrelated (the converse does not hold).

NOTES:
(i) For random variables X; and X5, with (marginal) expectations p; and ps respectively, and
marginal) variances o7 and o3 respectively, if random variables Z; and Z, are defined

1 2

Z1 = (X1 — ) /012y = (X2 — po) /02
that is, Z7 and Zy are standardized variables. Then
Corryy, ,1X1,Xo] = Covy, , [Z1, 2]
(ii) Extension to k variables: covariances can only be calculated for pairs of random variables, but

if k variables have a joint probability structure it is possible to construct a k x k matriz, C say, of
covariance values, whose (7, j)th element is

Covfxi,xj [Xiv Xj}

for i, =1, .., k, that captures the complete covariance structure in the joint distribution. If ¢ = j,
then

C’ovaj’Xi (X, Xi| = Covfxiﬂxj (X, X]
so C is symmetric, and if i = 7,
C’ovfxiﬂxi (X, Xi] = Varg,. [X5]
The matrix C is referred to as the variance-covariance matrix.

(iii) If random variable X is defined by

X = iaiXi
i=1
for random variables X7, ..., X and constants a, ..., ag, then
K
ErX] =) aiBy [Xi]
i=1

k i—1

k
Vars, [X] = Za?Vaeri [Xi] + 2 Z zaiajCovai’Xj (X, X
i=1 i=1 j=1
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(iv) Combining (i) and (iii) when k& = 2, and defining standardized variables Z; and Zs,
0<Vary, ,[Z1+2Z] =Vary, [Z1]+ Vary, [Zs] £2Covy, , [Z1,25]
=1+1£2Co0rrp, «, [X1,X0]
=2(1 £ Corrypy . [X1,X2])

and hence —1 < Corry, [X1,Xo] < 1.

2.10 SUMS OF RANDOM VARIABLES - THE CONVOLUTION
FORMULA

Suppose that X7 and X5 be continuous random variables taking values on X; and Xy respectively
with joint density function fx, x,. Then, if random variable Y is defined by ¥ = X 4 X», the
marginal density of Y is given by calculated as follows; consider the multivariate transformation

g: (X1, Xp) — (v, 2) so that g(x1,22) = (y,2) = (w1 + 2, 21)

so that the inverse transformation is given by (Xi1,X2) = (Z,Y — Z). Then by the multivariate
transformation theorem,

frz(y,2) = fx1.%:(2,y — 2)[J(y, 2)| for (y,2) € B.
where
B ={(y,2)|(y, 2) = g1, 22), 11 € X1, w9 € Xp}
J(y,z) is the determinant of a 2 X 2 matrix of partial derivatives of the inverse functions
g1 Nt ta) =ty g2 Mt ta) =t — b
which simply reduces to give J(y,z) = —1. Therefore
friz(y,2) = fxi,x:(2,9 — 2)

and so by the usual marginalization calculation

fr(y) = /Z.fY,Z(y,Z)dZ Z/;g fxy x,(x1,y — x1)dxy

If X; and X» are independent, then fx, x,(x1,22) = fx,(21)fx,(22) soif Y = X1 + X5, then Y
has pdf given by

fr(y) = : fx:(@1) fxo (y — x1)day
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2.11 ORDER STATISTICS

For k random variables X1, ...., Xk, the order statistics, Y1, ...., Y}, are defined by

Yi = X(;y — “the i’th smallest value in Xj,...., X}”

for i = 1, ...,k‘, so that Y1 = X(l) = Min {Xl, ...,Xk}, Yk = X(k) = Max {Xl, ,Xk}

For k independent, identically distributed random variables X1, ..., Xj, with marginal density func-
tion fx, there are two main results to consider;

RESULT 1 The joint density function of the order statistics Y71, ...., Y is given by

vy W, s yk) = B U x (y1) - fx (i) < oo <y

RESULT 2 The marginal pdf of the jth order statistic Y; for j = 1,...,k has the form

- {Ex i)Y L = Fxe (i)} fx ()

fri (y;) = G- Dk —j)!

Special Cases: MAXIMUM and MINIMUM
To derive the marginal pdf of Yy, first consider the marginal cdf of Yk;
Fy, (yx) = P[Yx <yg| = Plmax {X1, ..., Xp} <] = P[X1 < yk, X2 <Yk oo, Xi < Y]
k k
=[Pl <l = [ [ {(Fxww)}
i=1 i=1

= {Fx (yx)}*

= fyv. (k) = k{Fx )} fx(yr)

By a similar calculation, we can find the marginal pdf/cdf for Y7,
Fy,(y1) =PY1i<wp]=1-P[Y1 >y1]=1—P[min{Xy,..., Xk} > y1]
=1-P[X1>y1,X2>y1, ..., Xp > y1]
k k
=1-J[PXi>u)=1-]]{1- Fx(»)}
i=1 =1

=1—{1—Fx(n)}"

= fr) =k{1-Fx@)}" " fx)



