## CHAPTER 2

## RANDOM VARIABLES & PROBABILITY DISTRIBUTIONS

This chapter contains the introduction of random variables as a technical device to enable the general specification of probability distributions in one and many dimensions to be made. The key topics and techniques introduced in this chapter include the following:

- NORMALIZATION
- EXPECTATION
- TRANSFORMATION
- STANDARDIZATION
- GENERATING FUNCTIONS
- JOINT MODELLING
- MARGINALIZATION
- MULTIVARIATE TRANSFORMATION
- MULTIVARIATE EXPECTATION & COVARIANCE
- SUMS OF VARIABLES
- ORDER STATISTICS

# 2.1 CONSTRUCTING RANDOM VARIABLES & PROBABILITY MODELS

**Definition 2.1.1** A <u>random variable</u> X is a function defined on a sample space  $\Omega$  that associates a real number  $X(\omega) = x$  with each possible outcome  $\omega \in \Omega$ .

Formally, we regard X as a (possibly many-to-one) mapping from  $\Omega$  to  $\mathbb{R}$ 

$$\begin{array}{ccc} X: & \Omega \longrightarrow \mathbb{R} \\ & \omega \longmapsto x \end{array}$$

**Implication:** we can associate any sample space  $\Omega$  (for any experiment) with a sample space that is a set of real numbers, in which the events are subsets.

For example, we could regard set  $B \subseteq \mathbb{R}$  as an event associated with event  $A \subseteq \Omega$  if

$$A = {\{\omega | X(\omega) = x \text{ for some } x \in B\}}$$

A and B are events in different sample spaces but are termed equivalent, and

$$P[X \in B] = P(A)$$

so that, after defining the random variable X as a function on the experimental sample space, attention switches to assigning the probability  $P[X \in B]$  for a set  $B \subseteq \mathbb{R}$ 

**Note:** Strictly, when referring to random variables, we should make explicit the connection to original sample space  $\Omega$ , and write

$$P[X \in B] = P[\{\omega : X(\omega) \in B\}]$$

but, generally, we will suppress this and merely refer to X.

#### EVENTS IN $\mathbb{R}$

We will assign probability to subsets B of  $\mathbb{R}$  that are equivalent to events (subsets) in  $\Omega$  that form the basis of a  $\sigma$ -algebra of subsets of  $\Omega$ .

If  $\Omega$  is *countable*,  $\Omega = \{\omega_1, \omega_2, ...\}$ , then the events of interest will be of the form [X = b], or equivalently of the form  $[X \leq b]$  for  $b \in \mathbb{R}$ 

If  $\Omega$  is *uncountable*, then the events of interest will be of the form  $[X \leq b]$  for  $b \in \mathbb{R}$ 

## 2.2 DISCRETE RANDOM VARIABLES

**Definition 2.2.1** A random variable X is <u>discrete</u> if the set of all possible values of X (that is, the *range* of the function represented by X), denoted X, is **countable**, that is

$$X = \{x_1, x_2, ..., x_n\}$$
 [FINITE] or  $X = \{x_1, x_2, ...\}$  [INFINITE]

## **Definition 2.2.2** PROBABILITY MASS FUNCTION

The function  $f_X$ , defined on  $\mathbb{X}$  by

$$f_X(x) = P[X = x]x \in \mathbb{X}$$

that assigns probability to each  $x \in \mathbb{X}$  is the (discrete) **probability mass function**.

**NOTE**: For completeness, we define

$$f_X(x) = 0$$
  $x \notin X$ 

so that  $f_X$  is defined for all  $x \in \mathbb{R}$  Furthermore we will regard  $\mathbb{X}$  as the *support* of random variable X, that is, the set of  $x \in \mathbb{R}$  such that  $f_X(x) > 0$ 

## 2.2.1 PROPERTIES OF MASS FUNCTION $f_X$

#### **THEOREM**

A function  $f_X$  is a probability mass function for discrete random variable X with range  $\mathbb{X}$  of the form  $\{x_1, x_2, ...\}$  if and only if

- (i)  $f_X(x_i) \ge 0$
- (ii)  $\sum f_X(x_i) = 1$

#### **PROOF**

Events  $[X = x_1], [X = x_2]$  etc. are **equivalent** to events that partition  $\Omega$ , that is

$$[X = x_i]$$
 is equivalent to event  $A_i = \{\omega_i\}$ .

hence  $P[X = x_i] = P(A_i)$ , and the two parts of the theorem follow immediately.

#### **Definition 2.2.3** DISCRETE CUMULATIVE DISTRIBUTION FUNCTION

The <u>cumulative distribution function</u>, or cdf,  $F_X$  of a discrete random variable X is defined by

$$F_X(x) = P[X \le x] \qquad x \in \mathbb{R}.$$

## 2.2.2 CONNECTION BETWEEN $F_X$ AND $f_X$

### **THEOREM**

Let X be a discrete random variable with range  $\mathbb{X} = \{x_1, x_2, ...\}$ , where  $x_1 < x_2 < ...$ , and probability mass function  $f_X$  and cdf  $F_X$ . Then for any real value x, if  $x < x_1$ , then  $F_X(x) = 0$ , and for  $x \ge x_1$ ,

$$F_X(x) = \sum_{x_i \le x} f_X(x_i)$$

and hence  $f_X(x_1) = F_X(x_1)$  and

$$f_X(x_i) = F_X(x_i) - F_X(x_{i-1})$$
  $i = 2, 3, ...$ 

#### PROOF

Events of the form  $[X \leq x_i]$  can be represented as countable unions of the events  $A_i = \{\omega_i\}$ . The first result therefore follows from Probability Axiom 3. The second result follows immediately.

## 2.2.3 PROPERTIES OF DISCRETE CDF $F_X$

(i) In the limiting cases,

$$\lim_{x \to -\infty} F_X(x) = 0 \qquad \qquad \lim_{x \to \infty} F_X(x) = 1.$$

(ii)  $F_X$  is **continuous from the right** (but not continuous) on  $\mathbb{R}$  that is, for  $x \in \mathbb{R}$ ,

$$\lim_{h \to 0+} F_X(x+h) = F_X(x)$$

(iii)  $F_X$  is **non-decreasing**, that is

$$a < b \Longrightarrow F_X(a) \le F_X(b)$$

(iv) For a < b,

$$P[a < X \le b] = F_X(b) - F_X(a)$$

The functions  $f_X$  and/or  $F_X$  can be used to describe the **probability distribution** of random variable X. A graph of the function  $f_X$  is non-zero only at the elements of  $\mathbb{X}$ . A graph of the function  $F_X$  is a **step-function** which takes the value zero at minus infinity, the value one at infinity, and is non-decreasing with points of discontinuity at the elements of  $\mathbb{X}$ .

## 2.3 CONTINUOUS RANDOM VARIABLES

**Definition 2.3.1** A random variable X is <u>continuous</u> if the range of X, X, is <u>uncountable</u>, and the function  $F_X$  defined on  $\mathbb{R}$  by

$$F_X(x) = P[X < x]$$

for  $x \in \mathbb{R}$  is a **continuous** function on  $\mathbb{R}$ , that is, for  $x \in \mathbb{R}$ ,

$$\lim_{h \to 0} F_X(x+h) = F_X(x).$$

#### Definition 2.3.2 CONTINUOUS CUMULATIVE DISTRIBUTION FUNCTION

The <u>cumulative distribution function</u>, or cdf,  $F_X$  of a continuous random variable X is defined by

$$F_X(x) = P[X \le x] \qquad x \in \mathbb{R}.$$

## **Definition 2.3.3** PROBABILITY DENSITY FUNCTION

The <u>probability density function</u>, or pdf,  $f_X$  of a continuous random variable X is defined in terms of  $F_X$  by

$$F_X(x) = \int_{-\infty}^x f_X(t)dt$$

## 2.3.1 PROPERTIES OF CONTINUOUS $F_X$ AND $f_X$

- (i) Such a function  $f_X$  need not exist but continuous random variables where  $f_X$  cannot be defined in this way will be ignored. The function  $f_X$  can be defined piecewise on intervals of  $\mathbb{R}$ .
- (ii) For the cdf of a continuous random variable,

$$\lim_{x \to -\infty} F_X(x) = 0 \qquad \lim_{x \to \infty} F_X(x) = 1$$

(iii) Directly from the definition, at values of x where  $F_X$  is differentiable x,

$$f_X(x) = \frac{d}{dt} \left\{ F_X(t) \right\}_{t=x}$$

(iv) If X is continuous,

$$f_X(x) \neq P[X = x] = \lim_{h \to 0} [F_X(x+h) - F_X(x)] = 0$$

(v) For a < b,

$$P[a < X \le b] = P[a \le X < b] = P[a \le X \le b] = P[a < X < b] = F_X(b) - F_X(a)$$

#### **THEOREM**

A function  $f_X$  is a pdf for a continuous random variable X if and only if

$$(i) f_X(x) \ge 0$$
  $(ii) \int_{-\infty}^{\infty} f_X(x) dx = 1$ 

#### **PROOF**

Analogous to the discrete case, direct from definitions and properties of  $F_X$ .

**Example 2.3.1** Consider a coin tossing experiment where a fair coin is tossed repeatedly under identical experimental conditions, with the sequence of tosses independent, until a Head is obtained. For this experiment, the sample space,  $\Omega$  is then the set of sequences  $(\{H\}, \{TH\}, \{TTH\}, \{TTTH\}, ...)$  with associated probabilities 1/2, 1/4, 1/8, 1/16, ....

Define discrete random variable  $X:\Omega\longrightarrow\mathbb{R}$ , by  $X(\omega)=x\Longleftrightarrow$  first H on toss x. Then

$$f_X(x) = P[X = x] = \left(\frac{1}{2}\right)^x$$
  $x = 1, 2, 3, ...$ 

and zero otherwise. For  $x \geq 1$ , let k(x) be the largest integer not greater than x, then

$$F_X(x) = \sum_{x_i \le x} f_X(x_i) = \sum_{i=1}^{k(x)} f_X(i) = 1 - \left(\frac{1}{2}\right)^{k(x)}$$

and  $F_X(x) = 0$  for x < 1.



Figure 2.1: PMF  $f_X(x) = (\frac{1}{2})^x$ , x = 1, 2, 3, ... and CDF  $F_X(x) = 1 - (\frac{1}{2})^{k(x)}$ 

Graphs of the probability mass function (top) and cumulative distribution function (bottom) are shown in Figure 2.1. Note that the mass function is only non-zero at points that are elements of X, and that the cdf is defined for all real values of x, but is only continuous from the right.  $F_X$  is therefore a step-function.

**Example 2.3.2** Consider an experiment to measure the length of time that an electrical component functions before failure. The sample space of outcomes of the experiment,  $\Omega$  is  $^+$ , and if  $A_x$  is the event that the component functions for longer than x > 0 time units, suppose that  $P(A_x) = \exp\{-x^2\}$ .

Define continuous random variable  $X: \Omega \longrightarrow \mathbb{R}^+$ , by  $X(\omega) = x \iff$  component fails at time x. Then, if x > 0,

$$F_X(x) = P[X \le x] = 1 - P(A_x) = 1 - \exp\{-x^2\}$$

and  $F_X(x) = 0$  if  $x \le 0$ . Hence if x > 0,

$$f_X(x) = \frac{d}{dt} \{F_X(t)\}_{t=x} = 2x \exp\{-x^2\}$$

and zero otherwise.

Graphs of the probability density function (top) and cumulative distribution function (bottom)

2.4. EXPECTATIONS 21



Figure 2.2: PDF  $f_X(x) = 2x \exp\{-x^2\}$ , x > 0, and CDF  $F_X(x) = 1 - \exp\{-x^2\}$  x > 0

are shown in Figure 2.2. Note that both the pdf and cdf are defined for all real values of x, and that both are continuous functions. Note that here

$$F_X(x) = \int_{-\infty}^x f_X(t)dt = \int_0^x f_X(t)dt$$

as  $f_X(x) = 0$  for  $x \le 0$ , and also that

$$\int_{-\infty}^{\infty} f_X(x)dx = \int_{0}^{\infty} f_X(x)dx = 1.$$

## 2.4 EXPECTATIONS

**Definition 2.4.1** For a discrete random variable X with range X with probability mass function  $f_X$ , the **expectation** or **expected value** of X with respect to  $f_X$  is defined by

$$E_{f_X}[X] = \sum_{x = -\infty}^{\infty} x f_X(x) = \sum_{x \in \mathbb{X}} x f_X(x)$$

For a continuous random variable X with range X and pdf  $f_X$ , the <u>expectation</u> or <u>expected value</u> of X with respect to  $f_X$  is defined by

$$E_{f_X}[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{\mathbb{X}} x f_X(x) dx$$

**Note:** The sum/integral may not be convergent, and hence the expected value may be infinite. It is important always to check that the integral is finite: a sufficient condition is given by

$$\sum_{x} |x| f_X(x) < \infty \Longrightarrow \sum_{x} x f_X(x) = E_{f_X}[X] < \infty$$

$$\int_{-\infty}^{\infty} |x| f_X(x) dx < \infty \Longrightarrow \int_{-\infty}^{\infty} x f_X(x) dx = E_{f_X}[X] < \infty$$

Extension Let g be a real-valued function whose domain includes X. Then

$$E_{f_X}[g(X)] = \begin{cases} \sum_{x = -\infty}^{\infty} g(x) f_X(x) & \text{if } X \text{ is discrete} \\ \\ \int_{-\infty}^{\infty} g(x) f_X(x) dx & \text{if } X \text{ is continuous} \end{cases}$$

#### 2.4.1 PROPERTIES OF EXPECTATIONS

Let X be a random variable with mass function/pdf  $f_X$ . Let g and h be real-valued functions whose domains include X, and let a and b be constants. Then

$$E_{f_X}[ag(X) + bh(X)] = aE_{f_X}[g(X)] + bE_{f_X}[h(X)]$$

as (in the continuous case)

$$E_{f_X}[ag(X) + bh(X)] = \int [ag(x) + bh(x)]f_X(x)dx$$

$$= a \int g(x)f_X(x)dx + b \int h(x)f_X(x)dx$$

$$= aE_{f_X}[g(X)] + bE_{f_X}[h(X)]$$

#### Special Cases:

(i) For a simple linear function

$$E_{f_X}[aX+b] = aE_{f_X}[X] + b$$

(ii) Consider  $g(x) = (x - \mathbf{E}_{f_X}[X])^2$ . Write  $\mu = \mathbf{E}_{f_X}[X]$  (a constant that does not depend on x). Then, expanding the integrand

$$E_{f_X}[g(X)] = \int (x-\mu)^2 f_X(x) dx = \int x^2 f_X(x) dx - 2\mu \int x f_X(x) dx + \mu^2 \int f_X(x) dx$$
$$= \int x^2 f_X(x) dx - 2\mu^2 + \mu^2 = \int x^2 f_X(x) dx - \mu^2$$
$$= E_{f_X}[X^2] - \{E_{f_X}[X]\}^2$$

2.4. EXPECTATIONS 23

Then

$$Var_{f_X}[X] = E_{f_X}[X^2] - \{E_{f_X}[X]\}^2$$

is the <u>variance</u> of the distribution. Similarly,  $\sqrt{Var_{f_X}[X]}$  is the <u>standard deviation</u> of the distribution.

(iii) Consider  $g(x) = x^k$  for k = 1, 2, ... Then in the continuous case

$$E_{f_X}[g(X)] = E_{f_X}[X^k] = \int x^k f_X(x) dx,$$

and  $E_{f_X}[X^k]$  is the kth <u>moment</u> of the distribution.

(iv) Consider  $g(x) = (x - \mu)^k$  for k = 1, 2, ... Then

$$E_{f_X}[g(X)] = E_{f_X}[(X - \mu)^k] = \int (x - \mu)^k f_X(x) dx,$$

and  $E_{f_X}[(X-\mu)^k]$  is the kth <u>central moment</u> of the distribution.

(v) Consider 
$$g(x) = aX + b$$
. Then  $Var_{f_X}[aX + b] = a^2Var_{f_X}[X]$  
$$Var_{f_X}[g(X)] = E_{f_X}[(aX + b - E_{f_X}[aX + b])^2]$$
 
$$= E_{f_X}[(aX + b - aE_{f_X}[X] - b)^2]$$
 
$$= E_{f_X}[(a^2(X - E_{f_X}[X])^2]$$
 
$$= a^2Var_{f_X}[X]$$

#### 2.4.2 APPROXIMATIONS TO MEAN AND VARIANCE

A Taylor series expansion method can be used to obtain approximations to expectations of functions of a random variable. Let X be a continuous random variable, with range X and pdf  $f_X$ . Suppose that the expectation and variance of X with respect to  $f_X$  are denoted  $\mu$  and  $\sigma^2$  respectively, and let g be a real-valued function whose domain includes X. Then a Taylor approximation of g around  $\mu$  is given for real-value x by,

$$g(x) \approx g(\mu) + (x - \mu)g'(\mu) + \frac{1}{2}(x - \mu)^2 g''(\mu)$$

where g' and g'' are the first and second derivatives of g respectively. Using the Taylor approximation, and ignoring terms in  $(x - \mu)^k$  for k = 3, 4, ..., the expectation of g(X) with respect to  $f_X$  is given approximately by

$$E_{f_X}[g(X)] \approx g(\mu) + \frac{1}{2}\sigma^2 g''(\mu).$$

Ignoring terms in  $(x-\mu)^2$  and higher, the variance of g(X) with respect to  $f_X$  is given approximately by

$$Var_{f_X}[g(X)] \approx \sigma^2 \left\{ g'(\mu) \right\}^2$$