CHAPTER 2

RANDOM VARIABLES & PROBABILITY DISTRIBUTIONS

This chapter contains the introduction of random variables as a technical device to enable the general specification of probability distributions in one and many dimensions to be made. The key topics and techniques introduced in this chapter include the following:

- NORMALIZATION
- EXPECTATION
- TRANSFORMATION
- STANDARDIZATION
- GENERATING FUNCTIONS
- JOINT MODELLING
- MARGINALIZATION
- MULTIVARIATE TRANSFORMATION
- MULTIVARIATE EXPECTATION & COVARIANCE
- SUMS OF VARIABLES
- ORDER STATISTICS

2.1 CONSTRUCTING RANDOM VARIABLES & PROBABILITY MODELS

Definition 2.1.1 A <u>random variable</u> X is a function defined on a sample space Ω that associates a real number $X(\omega) = x$ with each possible outcome $\omega \in \Omega$.

Formally, we regard X as a (possibly many-to-one) mapping from Ω to \mathbb{R}

$$\begin{array}{ccc} X: & \Omega \longrightarrow \mathbb{R} \\ & \omega \longmapsto x \end{array}$$

Implication: we can associate any sample space Ω (for any experiment) with a sample space that is a set of real numbers, in which the events are subsets.

For example, we could regard set $B \subseteq \mathbb{R}$ as an event associated with event $A \subseteq \Omega$ if

$$A = {\{\omega | X(\omega) = x \text{ for some } x \in B\}}$$

A and B are events in different sample spaces but are termed equivalent, and

$$P[X \in B] = P(A)$$

so that, after defining the random variable X as a function on the experimental sample space, attention switches to assigning the probability $P[X \in B]$ for a set $B \subseteq \mathbb{R}$

Note: Strictly, when referring to random variables, we should make explicit the connection to original sample space Ω , and write

$$P[X \in B] = P[\{\omega : X(\omega) \in B\}]$$

but, generally, we will suppress this and merely refer to X.

EVENTS IN \mathbb{R}

We will assign probability to subsets B of \mathbb{R} that are equivalent to events (subsets) in Ω that form the basis of a σ -algebra of subsets of Ω .

If Ω is *countable*, $\Omega = \{\omega_1, \omega_2, ...\}$, then the events of interest will be of the form [X = b], or equivalently of the form $[X \leq b]$ for $b \in \mathbb{R}$

If Ω is *uncountable*, then the events of interest will be of the form $[X \leq b]$ for $b \in \mathbb{R}$

2.2 DISCRETE RANDOM VARIABLES

Definition 2.2.1 A random variable X is <u>discrete</u> if the set of all possible values of X (that is, the *range* of the function represented by X), denoted X, is **countable**, that is

$$X = \{x_1, x_2, ..., x_n\}$$
 [FINITE] or $X = \{x_1, x_2, ...\}$ [INFINITE]

Definition 2.2.2 PROBABILITY MASS FUNCTION

The function f_X , defined on \mathbb{X} by

$$f_X(x) = P[X = x]x \in \mathbb{X}$$

that assigns probability to each $x \in \mathbb{X}$ is the (discrete) **probability mass function**.

NOTE: For completeness, we define

$$f_X(x) = 0$$
 $x \notin X$

so that f_X is defined for all $x \in \mathbb{R}$ Furthermore we will regard \mathbb{X} as the *support* of random variable X, that is, the set of $x \in \mathbb{R}$ such that $f_X(x) > 0$

2.2.1 PROPERTIES OF MASS FUNCTION f_X

THEOREM

A function f_X is a probability mass function for discrete random variable X with range \mathbb{X} of the form $\{x_1, x_2, ...\}$ if and only if

- (i) $f_X(x_i) \ge 0$
- (ii) $\sum f_X(x_i) = 1$

PROOF

Events $[X = x_1], [X = x_2]$ etc. are **equivalent** to events that partition Ω , that is

$$[X = x_i]$$
 is equivalent to event $A_i = \{\omega_i\}$.

hence $P[X = x_i] = P(A_i)$, and the two parts of the theorem follow immediately.

Definition 2.2.3 DISCRETE CUMULATIVE DISTRIBUTION FUNCTION

The <u>cumulative distribution function</u>, or cdf, F_X of a discrete random variable X is defined by

$$F_X(x) = P[X \le x] \qquad x \in \mathbb{R}.$$

2.2.2 CONNECTION BETWEEN F_X AND f_X

THEOREM

Let X be a discrete random variable with range $\mathbb{X} = \{x_1, x_2, ...\}$, where $x_1 < x_2 < ...$, and probability mass function f_X and cdf F_X . Then for any real value x, if $x < x_1$, then $F_X(x) = 0$, and for $x \ge x_1$,

$$F_X(x) = \sum_{x_i \le x} f_X(x_i)$$

and hence $f_X(x_1) = F_X(x_1)$ and

$$f_X(x_i) = F_X(x_i) - F_X(x_{i-1})$$
 $i = 2, 3, ...$

PROOF

Events of the form $[X \leq x_i]$ can be represented as countable unions of the events $A_i = \{\omega_i\}$. The first result therefore follows from Probability Axiom 3. The second result follows immediately.

2.2.3 PROPERTIES OF DISCRETE CDF F_X

(i) In the limiting cases,

$$\lim_{x \to -\infty} F_X(x) = 0 \qquad \qquad \lim_{x \to \infty} F_X(x) = 1.$$

(ii) F_X is **continuous from the right** (but not continuous) on \mathbb{R} that is, for $x \in \mathbb{R}$,

$$\lim_{h \to 0+} F_X(x+h) = F_X(x)$$

(iii) F_X is **non-decreasing**, that is

$$a < b \Longrightarrow F_X(a) \le F_X(b)$$

(iv) For a < b,

$$P[a < X \le b] = F_X(b) - F_X(a)$$

The functions f_X and/or F_X can be used to describe the **probability distribution** of random variable X. A graph of the function f_X is non-zero only at the elements of \mathbb{X} . A graph of the function F_X is a **step-function** which takes the value zero at minus infinity, the value one at infinity, and is non-decreasing with points of discontinuity at the elements of \mathbb{X} .

2.3 CONTINUOUS RANDOM VARIABLES

Definition 2.3.1 A random variable X is <u>continuous</u> if the range of X, X, is <u>uncountable</u>, and the function F_X defined on \mathbb{R} by

$$F_X(x) = P[X < x]$$

for $x \in \mathbb{R}$ is a **continuous** function on \mathbb{R} , that is, for $x \in \mathbb{R}$,

$$\lim_{h \to 0} F_X(x+h) = F_X(x).$$

Definition 2.3.2 CONTINUOUS CUMULATIVE DISTRIBUTION FUNCTION

The <u>cumulative distribution function</u>, or cdf, F_X of a continuous random variable X is defined by

$$F_X(x) = P[X \le x] \qquad x \in \mathbb{R}.$$

Definition 2.3.3 PROBABILITY DENSITY FUNCTION

The <u>probability density function</u>, or pdf, f_X of a continuous random variable X is defined in terms of F_X by

$$F_X(x) = \int_{-\infty}^x f_X(t)dt$$

2.3.1 PROPERTIES OF CONTINUOUS F_X AND f_X

- (i) Such a function f_X need not exist but continuous random variables where f_X cannot be defined in this way will be ignored. The function f_X can be defined piecewise on intervals of \mathbb{R} .
- (ii) For the cdf of a continuous random variable,

$$\lim_{x \to -\infty} F_X(x) = 0 \qquad \lim_{x \to \infty} F_X(x) = 1$$

(iii) Directly from the definition, at values of x where F_X is differentiable x,

$$f_X(x) = \frac{d}{dt} \left\{ F_X(t) \right\}_{t=x}$$

(iv) If X is continuous,

$$f_X(x) \neq P[X = x] = \lim_{h \to 0} [F_X(x+h) - F_X(x)] = 0$$

(v) For a < b,

$$P[a < X \le b] = P[a \le X < b] = P[a \le X \le b] = P[a < X < b] = F_X(b) - F_X(a)$$

THEOREM

A function f_X is a pdf for a continuous random variable X if and only if

$$(i) f_X(x) \ge 0$$
 $(ii) \int_{-\infty}^{\infty} f_X(x) dx = 1$

PROOF

Analogous to the discrete case, direct from definitions and properties of F_X .

Example 2.3.1 Consider a coin tossing experiment where a fair coin is tossed repeatedly under identical experimental conditions, with the sequence of tosses independent, until a Head is obtained. For this experiment, the sample space, Ω is then the set of sequences $(\{H\}, \{TH\}, \{TTH\}, \{TTTH\}, ...)$ with associated probabilities 1/2, 1/4, 1/8, 1/16,

Define discrete random variable $X:\Omega\longrightarrow\mathbb{R}$, by $X(\omega)=x\Longleftrightarrow$ first H on toss x. Then

$$f_X(x) = P[X = x] = \left(\frac{1}{2}\right)^x$$
 $x = 1, 2, 3, ...$

and zero otherwise. For $x \geq 1$, let k(x) be the largest integer not greater than x, then

$$F_X(x) = \sum_{x_i \le x} f_X(x_i) = \sum_{i=1}^{k(x)} f_X(i) = 1 - \left(\frac{1}{2}\right)^{k(x)}$$

and $F_X(x) = 0$ for x < 1.

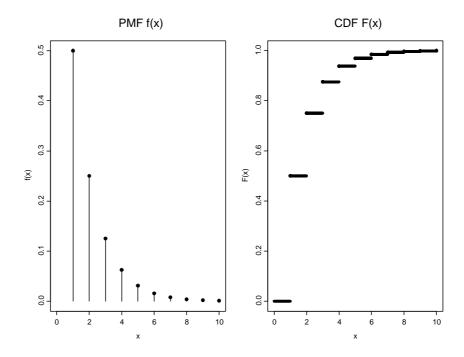


Figure 2.1: PMF $f_X(x) = (\frac{1}{2})^x$, x = 1, 2, 3, ... and CDF $F_X(x) = 1 - (\frac{1}{2})^{k(x)}$

Graphs of the probability mass function (top) and cumulative distribution function (bottom) are shown in Figure 2.1. Note that the mass function is only non-zero at points that are elements of X, and that the cdf is defined for all real values of x, but is only continuous from the right. F_X is therefore a step-function.

Example 2.3.2 Consider an experiment to measure the length of time that an electrical component functions before failure. The sample space of outcomes of the experiment, Ω is $^+$, and if A_x is the event that the component functions for longer than x > 0 time units, suppose that $P(A_x) = \exp\{-x^2\}$.

Define continuous random variable $X: \Omega \longrightarrow \mathbb{R}^+$, by $X(\omega) = x \iff$ component fails at time x. Then, if x > 0,

$$F_X(x) = P[X \le x] = 1 - P(A_x) = 1 - \exp\{-x^2\}$$

and $F_X(x) = 0$ if $x \le 0$. Hence if x > 0,

$$f_X(x) = \frac{d}{dt} \{F_X(t)\}_{t=x} = 2x \exp\{-x^2\}$$

and zero otherwise.

Graphs of the probability density function (top) and cumulative distribution function (bottom)

2.4. EXPECTATIONS 21

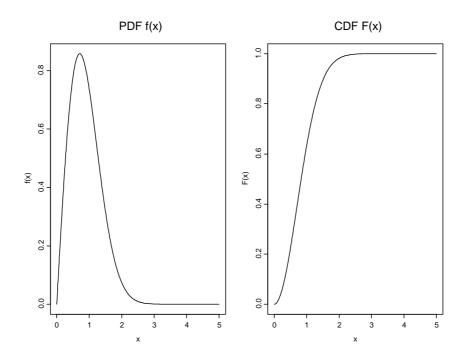


Figure 2.2: PDF $f_X(x) = 2x \exp\{-x^2\}$, x > 0, and CDF $F_X(x) = 1 - \exp\{-x^2\}$ x > 0

are shown in Figure 2.2. Note that both the pdf and cdf are defined for all real values of x, and that both are continuous functions. Note that here

$$F_X(x) = \int_{-\infty}^x f_X(t)dt = \int_0^x f_X(t)dt$$

as $f_X(x) = 0$ for $x \le 0$, and also that

$$\int_{-\infty}^{\infty} f_X(x)dx = \int_{0}^{\infty} f_X(x)dx = 1.$$

2.4 EXPECTATIONS

Definition 2.4.1 For a discrete random variable X with range X with probability mass function f_X , the **expectation** or **expected value** of X with respect to f_X is defined by

$$E_{f_X}[X] = \sum_{x = -\infty}^{\infty} x f_X(x) = \sum_{x \in \mathbb{X}} x f_X(x)$$

For a continuous random variable X with range X and pdf f_X , the <u>expectation</u> or <u>expected value</u> of X with respect to f_X is defined by

$$E_{f_X}[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{\mathbb{X}} x f_X(x) dx$$

Note: The sum/integral may not be convergent, and hence the expected value may be infinite. It is important always to check that the integral is finite: a sufficient condition is given by

$$\sum_{x} |x| f_X(x) < \infty \Longrightarrow \sum_{x} x f_X(x) = E_{f_X}[X] < \infty$$

$$\int_{-\infty}^{\infty} |x| f_X(x) dx < \infty \Longrightarrow \int_{-\infty}^{\infty} x f_X(x) dx = E_{f_X}[X] < \infty$$

Extension Let g be a real-valued function whose domain includes X. Then

$$E_{f_X}[g(X)] = \begin{cases} \sum_{x = -\infty}^{\infty} g(x) f_X(x) & \text{if } X \text{ is discrete} \\ \\ \int_{-\infty}^{\infty} g(x) f_X(x) dx & \text{if } X \text{ is continuous} \end{cases}$$

2.4.1 PROPERTIES OF EXPECTATIONS

Let X be a random variable with mass function/pdf f_X . Let g and h be real-valued functions whose domains include X, and let a and b be constants. Then

$$E_{f_X}[ag(X) + bh(X)] = aE_{f_X}[g(X)] + bE_{f_X}[h(X)]$$

as (in the continuous case)

$$E_{f_X}[ag(X) + bh(X)] = \int [ag(x) + bh(x)]f_X(x)dx$$

$$= a \int g(x)f_X(x)dx + b \int h(x)f_X(x)dx$$

$$= aE_{f_X}[g(X)] + bE_{f_X}[h(X)]$$

Special Cases:

(i) For a simple linear function

$$E_{f_X}[aX+b] = aE_{f_X}[X] + b$$

(ii) Consider $g(x) = (x - \mathbf{E}_{f_X}[X])^2$. Write $\mu = \mathbf{E}_{f_X}[X]$ (a constant that does not depend on x). Then, expanding the integrand

$$E_{f_X}[g(X)] = \int (x-\mu)^2 f_X(x) dx = \int x^2 f_X(x) dx - 2\mu \int x f_X(x) dx + \mu^2 \int f_X(x) dx$$
$$= \int x^2 f_X(x) dx - 2\mu^2 + \mu^2 = \int x^2 f_X(x) dx - \mu^2$$
$$= E_{f_X}[X^2] - \{E_{f_X}[X]\}^2$$

2.4. EXPECTATIONS 23

Then

$$Var_{f_X}[X] = E_{f_X}[X^2] - \{E_{f_X}[X]\}^2$$

is the <u>variance</u> of the distribution. Similarly, $\sqrt{Var_{f_X}[X]}$ is the <u>standard deviation</u> of the distribution.

(iii) Consider $g(x) = x^k$ for k = 1, 2, ... Then in the continuous case

$$E_{f_X}[g(X)] = E_{f_X}[X^k] = \int x^k f_X(x) dx,$$

and $E_{f_X}[X^k]$ is the kth <u>moment</u> of the distribution.

(iv) Consider $g(x) = (x - \mu)^k$ for k = 1, 2, ... Then

$$E_{f_X}[g(X)] = E_{f_X}[(X - \mu)^k] = \int (x - \mu)^k f_X(x) dx,$$

and $E_{f_X}[(X-\mu)^k]$ is the kth <u>central moment</u> of the distribution.

(v) Consider
$$g(x) = aX + b$$
. Then $Var_{f_X}[aX + b] = a^2Var_{f_X}[X]$
$$Var_{f_X}[g(X)] = E_{f_X}[(aX + b - E_{f_X}[aX + b])^2]$$

$$= E_{f_X}[(aX + b - aE_{f_X}[X] - b)^2]$$

$$= E_{f_X}[(a^2(X - E_{f_X}[X])^2]$$

$$= a^2Var_{f_X}[X]$$

2.4.2 APPROXIMATIONS TO MEAN AND VARIANCE

A Taylor series expansion method can be used to obtain approximations to expectations of functions of a random variable. Let X be a continuous random variable, with range X and pdf f_X . Suppose that the expectation and variance of X with respect to f_X are denoted μ and σ^2 respectively, and let g be a real-valued function whose domain includes X. Then a Taylor approximation of g around μ is given for real-value x by,

$$g(x) \approx g(\mu) + (x - \mu)g'(\mu) + \frac{1}{2}(x - \mu)^2 g''(\mu)$$

where g' and g'' are the first and second derivatives of g respectively. Using the Taylor approximation, and ignoring terms in $(x - \mu)^k$ for k = 3, 4, ..., the expectation of g(X) with respect to f_X is given approximately by

$$E_{f_X}[g(X)] \approx g(\mu) + \frac{1}{2}\sigma^2 g''(\mu).$$

Ignoring terms in $(x-\mu)^2$ and higher, the variance of g(X) with respect to f_X is given approximately by

$$Var_{f_X}[g(X)] \approx \sigma^2 \left\{ g'(\mu) \right\}^2$$