CHAPTER 2

RANDOM VARIABLES & PROBABILITY DISTRIBUTIONS

This chapter contains the introduction of random variables as a technical device to enable the
general specification of probability distributions in one and many dimensions to be made. The key
topics and techniques introduced in this chapter include the following;:

2.1

NORMALIZATION

EXPECTATION

TRANSFORMATION
STANDARDIZATION

GENERATING FUNCTIONS

JOINT MODELLING
MARGINALIZATION
MULTIVARIATE TRANSFORMATION
MULTIVARIATE EXPECTATION & COVARIANCE
SUMS OF VARIABLES

ORDER STATISTICS

CONSTRUCTING RANDOM VARIABLES &
PROBABILITY MODELS

Definition 2.1.1 A random variable X is a function defined on a sample space €2 that
associates a real number X (w) = x with each possible outcome w € €.

Formally, we regard X as a (possibly many-to-one) mapping from 2 to R

X: O—R

w2

Implication : we can associate any sample space ) (for any experiment) with a sample space that
is a set of real numbers, in which the events are subsets.

For example, we could regard set B C R as an event associated with event A C Q if

A = {w|X (w) = x for some z € B}

15
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A and B are events in different sample spaces but are termed equivalent, and
P[X € B] = P(A)

so that, after defining the random variable X as a function on the experimental sample space,
attention switches to assigning the probability P[X € B] for a set B C.R

Note : Strictly, when referring to random variables, we should make explicit the connection to
original sample space (), and write

P[X € B] = P[{w: X(w) € B}]
but, generally, we will suppress this and merely refer to X.

EVENTS IN R

We will assign probability to subsets B of R that are equivalent to events (subsets) in {2 that form
the basis of a g-algebra of subsets of Q.

If Q is countable, Q = {wi,wa,...}, then the events of interest will be of the form [X = b], or
equivalently of the form [X < b] for b € R

If © is uncountable, then the events of interest will be of the form [X < b] for b €.

2.2 DISCRETE RANDOM VARIABLES

Definition 2.2.1 A random variable X is discrete if the set of all possible values of X (that is,
the range of the function represented by X ), denoted X, is countable, that is

X = {a1,29,...,7,}  [FINITE] or X={2y,29,..}  [INFINITE]

Definition 2.2.2 PROBABILITY MASS FUNCTION
The function fx, defined on X by

fx(x)=PX =z]zeX

that assigns probability to each = € X is the (discrete) probability mass function.

NOTE: For completeness, we define
fx(x)=0 r¢X

so that fx is defined for all x €. R Furthermore we will regard X as the support of random variable
X, that is, the set of € R such that fx(x) >0
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2.2.1 PROPERTIES OF MASS FUNCTION fx

THEOREM

A function fx is a probability mass function for discrete random variable X with range X of
the form {x1,x9, ...} if and only if

(i) fx(z:) 20
(i) > fx (i) =1

PROOF
Events [X = z1],[X = 23] etc. are equivalent to events that partition 2, that is

[X = ;] is equivalent to event A; = {w;}.

hence P[X = x;] =P(A4;), and the two parts of the theorem follow immediately.

Definition 2.2.3 DISCRETE CUMULATIVE DISTRIBUTION FUNCTION

The cumulative distribution function, or cdf, F'x of a discrete random variable X is defined
by

2.2.2 CONNECTION BETWEEN Fy AND fx

THEOREM

Let X be a discrete random variable with range X = {x1,x9,...}, where 7 < x5 < ..., and
probability mass function fx and cdf Fx. Then for any real value z, if x < x;, then Fx(x) = 0,
and for x > x1,

Fx(z) = ) fx(@i)

z; <z
and hence fx(x1) = Fx(z1) and

Ix(zi) = Fx (%) — Fx(zi-1) 1=2,3,...

PROOF
Events of the form [X < z;] can be represented as countable unions of the events A; = {w;}.
The first result therefore follows from Probability Axiom 3. The second result follows immediately.
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2.2.3 PROPERTIES OF DISCRETE CDF Fyx
(i) In the limiting cases,

lim Fx(x)=0 lim Fx(x) = 1.

T——00 T—00
(ii) Fx is continuous from the right (but not continuous) on R that is, for x € R,

lim F' h) =F
Jm Fx (z +h) = Fx(x)

(iii) Fx is non-decreasing, that is

a<b$Fx((I> SFx(b)

(iv) For a < b,
Pla < X <b] = Fx(b) — Fx(a)
The functions fx and/or Fx can be used to describe the probability distribution of random
variable X. A graph of the function fx is non-zero only at the elements of X. A graph of the

function Fx is a step-function which takes the value zero at minus infinity, the value one at
infinity, and is non-decreasing with points of discontinuity at the elements of X.

2.3 CONTINUOUS RANDOM VARIABLES

Definition 2.3.1 A random variable X is continuous if the range of X, X is uncountable,
and the function Fx defined on R by

Fx(z) = P[X <z
for x € R is a continuous function on R , that is, for x € R,

}llir% Fx(z+ h) = Fx(x).

Definition 2.3.2 CONTINUOUS CUMULATIVE DISTRIBUTION FUNCTION

The cumulative distribution function, or cdf, Fx of a continuous random variable X is
defined by

Fx(x) = P[X < 7] x €R.

Definition 2.3.3 PROBABILITY DENSITY FUNCTION

The probability density function, or pdf, fx of a continuous random variable X is defined in
terms of Fx by

Fy(o) = | " fx(t)t
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2.3.1 PROPERTIES OF CONTINUOUS Fx AND fx

(i) Such a function fx need not exist but continuous random variables where fx cannot be
defined in this way will be ignored. The function fx can be defined piecewise on intervals of
R.

(ii) For the cdf of a continuous random variable,

lim Fx(x)=0 lim Fx(x)=1

T——00 £—00

(iii) Directly from the definition, at values of  where F is differentiable x,
d
fx(@) = S AFx ()}

(iv) If X is continuous,
fx(@) # PIX = 2] = lim[Fy (e + h) — Fx(2)] = 0
(v) For a <b,
Pla<X <b=Pla<X <b=Pla<X <b=Pla<X <b]=Fx(b)— Fx(a)

THEOREM
A function fx is a pdf for a continuous random variable X if and only if

(i) fx(z) > 0 ) [ fel@de=1

PROOF
Analogous to the discrete case, direct from definitions and properties of Fx.

Example 2.3.1 Consider a coin tossing experiment where a fair coin is tossed repeatedly under
identical experimental conditions, with the sequence of tosses independent, until a Head is
obtained. For this experiment, the sample space, €2 is then the set of sequences

{H},{TH} ,{TTH} ,{TTTH} ...) with associated probabilities 1/2, 1/4, 1/8, 1/16, ... .

Define discrete random variable X : @ — R, by X (w) = x <= first H on toss . Then

1 x
fx(x)=P[X =2a] = <§> x=1,2,3, ...
and zero otherwise. For & > 1, let k(z) be the largest integer not greater than x, then
k() 1\ k@)
Fr) = 3 gt = 3 sx@ =1~ (3)

and Fx(z) =0 for x < 1.
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Figure 2.1: PMF fy () = (3)*,2=1,2,3, .. and CDF Fy(z) = 1 — (1)

Graphs of the probability mass function (top) and cumulative distribution function (bottom) are
shown in Figure 2.1. Note that the mass function is only non-zero at points that are elements of
X, and that the cdf is defined for all real values of x, but is only continuous from the right. Fx is
therefore a step-function.

Example 2.3.2 Consider an experiment to measure the length of time that an electrical
component functions before failure. The sample space of outcomes of the experiment, Q is T, and
if A, is the event that the component functions for longer than x > 0 time units, suppose that

P(A;) = exp {—%}.

Define continuous random variable X : Q — R™, by X (w) = & <= component fails at time x.
Then, if z > 0,

Fx(x)=PX <z|]=1-P(A;)=1- exp{—xz}

and Fx(z) =0if x <0. Hence if x > 0,

d
fx(@) = = {Fx(D}iey = 2wexp { 2%}
and zero otherwise.

Graphs of the probability density function (top) and cumulative distribution function (bottom)
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Figure 2.2: PDF fx(x) = 2zexp {—2?}, # >0, and CDF Fx(z) =1 —exp{—2?}x >0

are shown in Figure 2.2. Note that both the pdf and cdf are defined for all real values of x, and
that both are continuous functions. Note that here

Fx(ﬁ) =/_ fx(t)dt =/0 fx(t)dt
as fx(z) =0 for x <0, and also that

/_fo(ﬂ?)dl’ = ./Ooofx(l’)dl’ =1

2.4 EXPECTATIONS

Definition 2.4.1 For a discrete random variable X with range X with probability mass function
fx, the expectation or expected value of X with respect to fx is defined by

[e @]

Ep(X]= ) afx(x) =) xfx(x)

T=—00 zeX

For a continuous random variable X with range X and pdf fx, the expectation or
expected value of X with respect to fx is defined by

Ep [X] = /

J—0C

oo

xfx(x)dx = /a:fx(:c)da:

JX
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Note : The sum/integral may not be convergent, and hence the expected value may be infinite.
It is important always to check that the integral is finite: a sufficient condition is given by

z|$|fx($) <00 = Zl“fx(l’) =FE; [X] < o0

/00 |z| fx (z)dz < co = /00 xfx(z)dr = Ef [X] < o0

J —0C

Extension Let g be a real-valued function whose domain includes X. Then

oo

Z 9(x) fx(x) if X is discrete
Erclg(x)]=¢ "
/ 9(z) fx(z)dx if X is continuous

2.4.1 PROPERTIES OF EXPECTATIONS

Let X be a random variable with mass function/pdf fx. Let g and h be real-valued functions
whose domains include X, and let a and b be constants. Then

Ejylag(X) + bh(X)] = aEfy [9(X)] + 0By [h(X)]

as (in the continuous case)

Byylag(X) + Bh(X)] = / lag() + bh(z)] fx (2)dz

—a [gla)fx(a)de +b [ o) fx (@)do

= aBy, [g(X)] + bEpy [h(X)]
Special Cases :

(i) For a simple linear function

Efx [G’X + b} = aEfX [X] +0

ii) Consider g(z) = (x—E¢, [X])2. Write u =E;, [X] (a constant that does not depend on ).
fx fx
Then, expanding the integrand

Ep lg(X)] = /(x W2 fx(x)de = /fczfx(ﬂf)dw o /CL’fx(ﬂf)dw b /fx(w)dw

— [ hxa)de — 22 4 2 = [ fx(@)do - 2

= Efy [XQ} - {Efx [X]}Q
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Then
Varyg, [X] = Eyy [XQ} - {Efx [X]}2

is the variance of the distribution. Similarly, \/Vary, [X] is the standard deviation of
the distribution.

(iii) Consider g(x) = 2* for k = 1,2, .... Then in the continuous case
Bpylo(X)] = By X = [ a*fx(@)aa,

and Ey, [X¥] is the kth moment of the distribution.

(iv) Consider g(x) = (z — p)* for k =1,2,.... Then

Erlo(X)] = Epe[(X = '] = / (2 — )" fx (a)de,

and Ey, [(X — p)*] is the kth central moment of the distribution.

(v) Consider g(z) = aX +b. Then Vars,[aX +b] = a?Vary, [X]
Vary, [g(X)] = Ef[(aX +b— Ey, [aX + b))
= Er [(aX +b—aEp [X] —b)?]
= Erc[(a*(X — Er[X])?)
= a*Vars, [X]

2.4.2 APPROXIMATIONS TO MEAN AND VARIANCE

A Taylor series expansion method can be used to obtain approximations to expectations of functions
of a random variable. Let X be a continuous random variable, with range X and pdf fx. Suppose
that the expectation and variance of X with respect to fx are denoted p and o2 respectively, and
let g be a real-valued function whose domain includes X. Then a Taylor approximation of g around
W is given for real-value x by,

1
9(x) = g(1) + (x = g (i) + 5 (@ — p)*g(p)
where g/ and g/ are the first and second derivatives of g respectively. Using the Taylor approxi-

mation, and ignoring terms in (z — pu)* for k = 3,4, ..., the expectation of g(X) with respect to fx
is given approximately by

Er[9(X)] = g(p) + %029//(u)-

Ignoring terms in (x—u)? and higher, the variance of g(X) with respect to fx is given approximately
by

Vars, [9(X)] =~ o? {g/(u)}*



