DISCRETE DISTRIBUTIONS
WORKED EXAMPLES

EXAMPLE: LIGHTNING DAMAGE
For insurance purposes, the amount of damage (in £1000) that will be caused to a TV mast by
lightning during the next calendar year is to be assessed. Let N be a discrete random variable taking
values on {0, 1,2, ...} that records the number of lightning strikes. Historical information indicates that
an appropriate probability model for N has pmf
e 2n

fn(n) = . n=0,1,2,..

(that is, a Poisson distribution with parameter 2; we write N ~ Poisson(2)). Historical information,
and economic predictions, also indicate that for the next calendar year, the amounts of damage caused
by the strikes will themselves be discrete random variables with range {0,1,2,...} and with pmf fx,
Let X; be the random variable corresponding to strike ¢. It may also be assumed that the random
variables are mutually independent, that is, for any n,

P

ﬂ (XZ = .’L’z) =P [Xl = $1,X2 = T, ...,Xn = .’L’n} = HP {Xz = xz}
i=1 i=1

What is the probability distribution of

(i) the total amount of damage caused, S
(ii) the minimum amount of damage caused by a strike, M

(iii) the maximum amount of damage caused by a strike, L

SOLUTION :

(i) For the next calendar year, the number of strikes N is not observed. However, if N = n (for some
non-negative integer n), then let discrete random variable S,, be the total amount of damage caused by
the n strikes. Then, conditional on N = n,

Sn = X1 +X2+---+Xn=in
i=1

that is, the sum of n independent random variables that each have pmf fx. The random variable S,
also has range {0, 1,2,...}. We are actually interested in the random variable S, not conditional on any
particular value of .

Let the pmfs of S,, and S be fg, and fs respectively. Them for s € {0,1,2,...}, by the Theorem
of Total Probability, using a partition constructed using the different possible values of N, we have

fs(s) =P[S=s] =) P[S=s|N=n|PIN =n]
n=0
(regarding the sample space ) as being composed of pairs of values of (S, N)). Now

PIS=sIN=n=PlS,=sIN=n]=fs,(s) -  fs(s) =3 fs.()fn(m). (1)
n=0



We do not have fg, (s) directly, but it could be computed by again using the Theorem of Total Proba-
bility, that is, for n = 2, So = X7 + X5 and, partitioning using different possible values of X1

fs, (s ZP[52_3|X1_:¢]P[X1_;1: Y PlXy=s—a]P[X;=2]= fo2 z) fx, (x).

=0 =0

The distribution of S,, can be computed recursively in this way, but is quite laborious.

A preferable method of computation uses probability generating functions (pgfs). For a discrete
random variable X taking values on range {0, 1,2, ...}, the pgf Gx is defined for real value ¢ by

t)=> t"fx(x)
=0
and a key result tells us that if X; and X5 are independent, and Y = X7 + X5 then the pgf of Y is
given by
Gy (t) = Gx, (t)Gx, (1)

Here, by extension, we have
Sn=) Xi = Gs, () = Gx,()Gx,(1).-CGx,(t) = {Gx(t)}" (2)

as X1, ..., X, are identically distributed, and have the same pgf. Now, considering the pgf of S, we
have

Gs(t) = ztsfs(s) = zts {zfsn (s)fN(n)} from (1)
s=0 s=0 n=0

= Z {z t° fs, (s)} Z {Gs, ()} fn(n) exchanging the summation order
s=0

n=0

=3 {Gx ()" fw(n) from (2)
n=0

—22n

_Z{GX

2G
— ¢2 Z {+ =e2exp{2Gx ()} summing an exponential series

Note that this result says precisely that, recalling the expectation definition of pgfs, Gg(t) = Eyg [tS ],
and

Gs(t) = Eyy [Gs, (1) = Egy {Gx ()] = Eyy [{Epy (Y]] = Gn (Gx(2).

Hence
Gs(t) =exp{—2+2Gx(t)} =exp{2(Gx(t) — 1)}

and subsequently the pmf of S (and other quantities, such as expectations and other moments can be
derived easily.



(ii) For the minimum strike-related damage, we use the same partitioning method and first condition
on N =mn. Define
M, = min{Xy, ..., X;,}

as the minimum value obtained from n strikes. We have that

n n
P[M, > z|N =n] = ﬂ (Xi>m)|N=n| =P[X;>=,...,X, >[N =n] = [[P[X; > 7]

by independence. Define rx (z) as the reliability function for X, that is,rx (x) = P[X > 2] = 1— Fx(x),
then

P[Mn>a:|N:n]:HP[X¢>:I:] HTX ) ={rx(z)}".

Then, unconditionally, following the same calculation as in (i),

o« o«

ru(x) =P[M >z =Y P[M,>zN=n]P[N=n]=> {rx(z)}" fn(n)
n=0 n=0

-3 (xt 2y Bl 2 a0

Hence
ru(z) =exp{2(rx(z) — 1)} < Fu(z) =1—ry(z) =1 —exp{2(rx(z) — 1)}

(iii) For the maximum strike-related damage, we use the same partitioning method and first condition
on N =n. Define
L, = max {X1,..., X}

as the maximum value obtained from n strikes. We have that

n n
P[L, <z|N=n]= ﬂ (X <@)IN=n| =P[X) <a,..,X, <N =n]=][[P[Xi <af

by independence. Then, by inspecting the cdf of L

n n

PlL, <z[N =n]=][P[X; <a] =[] Fx(x) = {Fx(x)}".

i=1 i=1
Then, unconditionally, following the same calculation as in (i),

[e @]

F(x)=P[L<a] =) P[L, <N =n]P[N Z{FX N fa(n)

n=0

= Z{Fx = Z {QFX = ¢ Zoxp {2Fx (2)}

Hence
Fr(x) =exp{2(Fx(z) — 1)}



EXAMPLE: POPULATION EXTINCTION/GENEALOGY
(“Branching Process” Example from Chapter 1)
Let X be the number of offspring of an animal in some population; X is a discrete random variable
and by assumption
P[X =0] >0.

Let Z1, Za, Z3... be the numbers of animals in the 1st, 2nd, 3rd etc. generations (and, for completeness,

define Zy = 1). Note that
Zin

Zni1 =Y X"

i=1

where Xi(j ) is the number of offspring of the ith animal in the jth population, a random variable with
the same distribution as X. Finally, let

P [ij) - k} = i

where{po, p1,p2, ...} is a probability distribution yet to be specified. Suppose that Gx is the probability
generating function of X.

Under these assumptions, what is the probability of ultimate extinction 7

SOLUTION :
We consider first the probability generating function of Z,,. By definition
Gz,(t) = tfz,(2) =) t*P[Z, =]

z=0 z=0

= th ZP [Zn = 2|Zn-1=Yy| P[Zn-1 =1y by the Theorem of Total Prob.
z=0 y=0

= {ZtZP (Zn = 2|Zp—1 = y]} PZ,—1 =1 exchanging the summation order

=0 | 2=0

= {GC 120 )} F2, 1 ()
n=0

where G, |7, (t|y) is the conditional generating function of Z,, given Z,, 1 = y, and fz, ,(.) is the
pmf for Z,_1. Now, given Z,_1 =y, the sum

Zn—l

Yy
Xi(nfl) _ Xi(nfl)

is a sum of y independent variables with the same distribution. Hence, by the result from the previous

example
G 1 Zns (tly) = {Gx (1)}
and thus -
Gz, (t) =Y {Gx()} fz,.,(y) = Gz, ,(Gx(t)) (3)

y=0



which gives a recursive method for computing Gz, . Also, by recursion

Gz,(t) =Gz, ,(Gx(t) = Gz, ,(Gx (Gx(t))) = ... = Gx (Gx (Gx (..Gx (Gx(1)))))

that is, ultimately, an n-fold computation. Taking the final expression, we have, by considering the
internal n — 1 terms,

Gz, (t) = Gx (Gx (Gx (...Gx (Gx(t))))) = Gx (Gz,_, (1)) (4)

Denote by 7, the probability P [Z, =0]. Then, by definition of the pgf, m, = Gz, (0), that is the
coefficient of t¥ in the expansion of Gz, .and hence by (4)

T = Gz,(0) = Gx (Gz,_, (0)) = Gx (Tn-1) (5)
Now define the probability of extinction 7

7w = P[Zy =0 for some m|] = lim =,

It follows that 7 (if it exists) is the solution of (5), that is
m=Gx (m) (6)

Now, the function Gx(t) is continuous and differentiable on the range (0,1). Also, as it is a convex
combination, via fx, of terms 1,%,¢2,¢3, ... and hence is non-decreasing on (0, 1); for t; < to

1) = itffx(w) < itétfx(l’) = Gx(t2)
=0 =0
Note that also for t1 < tg
et = L bl = Zmﬂ (a) €30t (@) = Gl (1)
2=0
so Gx(t) also has a slope that is non-decreasing in ¢. Finally,
Gx(0) = P[X = 0] =po >0 lefx fo

and the slope of Gx(t) at t =1 is

d o o
Gx(1) = = Gx(B)|my = Y al™ fx(x) =Y wfx(x) = Epy [X] = p, say.
=0 =0

Now reconsider (6); to find 7™ we seek the solution of the equation
x=Gx(x) or x—Gx(x)=0.

It is clear from the diagrams below that if G’y (1) > 1, the equation has a unique solution away from 1,
but if G (1) < 1, the only solution is 7 = 1. Therefore, as

Gx(1) =By [X] = p



we can observe that the population becomes extinct with probability = < 1 if Ey, [X] = p > 1, but
becomes extinct with probability 7 =1 if Ey, [X] = p < 1.

For a concrete example, let
fx(x)=6%(1-10) x=0,1,2,3, ...

for some 0 (0 <6 <1). Then pg=P[X =0]=1—6 and

I ;em—w:(l—e);m:i—jz:l

Gx(t) = Y t"fx(x)=> 0" (1—-0)=(1-6)> t°6" = 11__; (0<t<1)
x=0 x=0 =0

00-0) _ 6(1—6) 6

x (1) mﬁ X():(1_9)2_1_9

6
so that G’y (1) = Ey, [X] = T—g= M Finally, for 7, from (6),

1-6 _ 10
1—(97'('_ ™= OI'7T——9

T—Gx(m)=0=m—

Figure 1: Extinction probability calculation if P [X = z| = 6% (1 — 0)



EXAMPLE

Suppose that two systems are set in operation on day 1. The probability that system 1 fails for the
first time on day n is denoted p;(n) (that is, the conditional probability, defined as a function of n, that
the system fails on day n given that it has not failed on any preceding day); similarly, the probability
that system 2 fails for the first time on day n is denoted pa(n) Let X7 and Xa be the discrete random
variables corresponding to the days on which system 1 and system 2 fail for the first time, respectively.

Show that the probability mass functions of X; and Xs are given by

n—1

fx;(n) = pi(n) H(l —pi(k)) n=1,2,.. fori=1,2
k=1

and zero elsewhere, respectively.

Suppose that, p1(.) and pa(.) are specified by

1
p1(n) = n=1,2,..

pa(n) =1—e " n=1,2,..
where A is a positive real constant, so that p; is decreasing and ps is increasing with n.

Show that p; and po lead to valid probability models for X; and X5, and find the mass and distribution
functions of X7 and Xo.

SOLUTION :
Let Dy denote the event that system 1 fails on day k, for £ = 1,2,.... Then, if S;, denotes the event
that the first failure occurs on day n then

S,=DiNnDyNnD{N..ND,_1ND,
so that, by the chain rule

P(Sn) = P (DY) P(Dy|Dy)P(Ds|Dy N Dy)...P(D;,_|Dy N Dy N D3N ...
.0 D, )P(D,|D,NDynDsN...ND, ;)

n—1

=1 =p(1)1=p1(2)A = p1(3))-.A = p1(n = 1))p1(n)
as for each k, we have
P(Dy|DiNnDLNDsN...NDj_q) = pi(k) P(D,IDiNnDNDsN...NDy_y) =1—pi(k)

as these conditional probabilities are given in the question. Hence, for i = 1,2,

n—1

fr(n) = PR =n] = P(S,) = pi(n) [[A = pilk))  n=1,2,...
k=1

Now, we also have, using the chain rule, that

n
P[X; >n] = P(DiNDyNDyN...N D, ;N D) =[] —pik))
k=1



so for system 1 we have

X1>n=1i[1—p1 =ﬁ< k+1>=ﬁ<i1>=n—1ﬁ—l

k=1 k=1

and hence the cdf of X is given by

Fy,(n) = P[X; <n]=1-P[X; >n] = nLH n=12,..

which is a valid cdf, as it takes values on [0, 1], is non-decreasing in n, and is a right-continuous (step)
function. By differencing, we have

fx,(n) =P[Xy <n]-P[X; <n—1]

—(1-P[X;>n]) — (1—P[X; >n—1])

:(1_71-11-1)_(1_%)

1
= —— n=l,2,3,...
n(n+1)

Similarly, for system 2,

n n n A
_ _ Ak _ _
P[X3 > n)] —kl_[l 1—p2(k))—He —exp{—)\Zk}—exp{—gn(n—&-l)}
and thus
A
Fx,(n)=P[Xo<n]=1—P[Xa>n|=1—exp —En(n +1) n=1,2,..
which is again a valid cdf. Finally, we have

fxa(n) = P[Xy <n]—P[Xy <n—1]

:(I—P[XQ>n])—(1—P[XQ>n—1D

(1o Bt} - (1o {ntn )

= (1 — e”‘") exp {—%n(n - 1)} n=1273,..



EXAMPLE

In a cricket ball throwing contest, a competitor is permitted as many throws as they like, and the
longest of their throws is recorded. The number of throws that they take is a discrete random variable,
T, taking values on range T = {1, 2, ...} with probability mass function given by

fr(t) = <1—90> <1—10>H t=1,2, ..

Let random variables X X, ..., X7 (where, note, T' is not known before the contest starts) denote the
measured throws of a given competitor. Suppose that the throws are mutually independent, and have
identical probability distributions specified via a “reliability”’ function rx that specifies the probability
that a single throw exceeds a given value, that is, for > 0,

x>0

rx(z) = P[X; > 2| = 2

for each 7.

Verify that rx specifies a valid probability model. If the number of throws taken is known to be t, let
the longest throw recorded for a given competitor be a random variable L, so that

L = max {XLXQ, ...,Xt} 5
find the reliability function for L, r, say, given by
rr(x) = P[L > z]

for x > 0.
Now, suppose that a competitor records a longest throw that is longer than a distance [. Find an
expression for the conditional probability that the number of throws taken in total is equal to t, for
t=1,2,...

SOLUTION :

First, rx specifies a valid probability model, as, because of the probability axioms, we require that
0<rx(z)<1 forallz>0

and also that, here,

Iin})rL(x) =PX>0=1 and lim rz(x) = lim P[X > x| =0.

T—00 T—00

Now, given that T' = ¢, that is that ¢ > 1 throws were taken, we consider the event [L <] (the event
that the largest of the ¢ throws is less than ). We have that

PL<I|T=t =P(Xi<h)Nn(Xe<)nNn..N(X; <)|T=1t] (no throw longer than )
= P[X; <I]P[X2 <I]..P[X; <] (by mutual independence)

= (1= rx ()1 = rx (D)1~ rx (1)

t
= (ﬁ) (from above)



10

Hence, using the theorem of total probability, using the partition given by [T' = 1], [T = 2], ...we have

o«

PIL<I) =) PIL<I|T=4P[T=t

() (&) )

9 l > s
_(1—0> (—1 );(101_’_1) where s =t —1
(9 l 1 ( . y o
10 141 L i summing a geometric progression

0(1+1)
9]
10+ 91
Hence 0
N=1-P
i) =y 10+ 91

Now, given [L > [], we have by Bayes Theorem

riiiresrreg_{ ()} ()G

P[L > ] B ( 10

P[T=t|L>1=




