M2S1 - EXERCISES 2

Questions marked * are challenging. Unmarked questions are standard...

1. Show that the function, F_X , defined for $x \in \mathbb{R}$ by

$$F_X(x) = c \exp\left\{-e^{-x}\right\}$$

is a valid cdf for a continuous random variable X for a specific choice of constant c, and find the pdf, f_X associated with this cdf.

Now consider the function $f_X(x) = cg(x)$ for some constant c > 0, with g defined by

$$g(x) = \frac{|x|}{(1+x^2)^2} \qquad x \in \mathbb{R}$$

Show that $f_X(x)$ is a valid pdf for a continuous random variable X with range $\mathbb{X} = \mathbb{R}$, and find the cdf, F_X , and the expected value of X, $E_{f_X}[X]$, associated with this pdf

2. The failure time of an electronic component is a continuous random variable X with cdf F_X defined by

$$F_X(x) = 1 - \frac{1}{(1+\lambda x)^2}$$
 $x > 0$

for parameter $\lambda > 0$, and $F_X(x) = 0$ for $x \leq 0$.

Find the pdf, f_X , and the expected value, $E_{f_X}[X]$ of X. Find and interpret the conditional probability $P[X > c_2 \mid X > c_1]$ for constants $c_1 < c_2$.

Now suppose that, due to a fusing fault, there is a probability π ($0 \le \pi < 1$) that the component fails instantaneously (so that X = 0). Find the cdf of X, and show that random variable X is only continuous (according to the definition given in lectures) if $\pi = 0$.

Write down and then evaluate a reasonable definition for the expectation of X in terms of π , F_X and λ . Justify the definition you use.

3. Let X be a continuous random variable with range $\mathbb{X} = \mathbb{R}^+$, pdf f_X and cdf F_X . By writing the expectation in its integral definition form on the left hand side, and changing the order of integration show that

$$E_{f_X}[X] = \int_0^\infty [1 - F_X(x)] dx$$

Using an identical approach, show also that for integer $r \geq 1$,

$$E_{f_X}[X^r] = \int_0^\infty rx^{r-1} \left[1 - F_X(x)\right] dx$$

 4^* . Suppose that continuous random variables X_1 and X_2 both with range $\mathbb{X} = \mathbb{R}^+$ have pdfs f_1 and f_2 respectively such that

$$f_1(x) = cx^{-1} \exp\left\{-(\log(x))^2/2\right\} \qquad x > 0 \qquad f_2(x) = f_1(x) \left[1 + \sin(2\pi \log x)\right] \qquad x > 0$$
 and $f_1(x) = f_2(x) = 0$ for $x \le 0$. If, for $r = 1, 2, ..., E_{f_1}[X_1^r] = \exp\left\{r^2/2\right\}$, show that
$$E_{f_2}[X_2^r] = \exp\left\{r^2/2\right\}$$

Hint: write out the integral for $E_{f_2}[X_2^r]$, and then make a transformation $t = \log(x)$ in the integral. Then complete the square.

M2S1 EXERCISES 2: page 1 of 2

5. Suppose that X is a continuous random variable with range \mathbb{R} and pdf given by

$$f_X(x) = \alpha^2 x \exp\{-\alpha x\}$$
 $x \ge 0$

and zero otherwise, for parameter $\alpha > 0$.

(i) Find the cdf of X, F_X , and hence show that, for any positive value m,

$$P[X \ge m] = (1 + \alpha m) \exp\{-\alpha m\}$$

- (ii) Find $E_{f_X}[X]$. If the expected value of X is increased to $2/\beta$ (for $0 < \beta < \alpha$), find the associated change in $P[X \ge m]$.
- 6. Suppose that X is a continuous random variable with density function given by

$$f_X(x) = 4x^3$$
 $0 < x < 1$

and zero otherwise. Find the density functions of the following random variables

(a)
$$Y = X^4$$
 (b) $W = e^X$ (c) $Z = \log X$ (d) $U = (X - 0.5)^2$

Find the monotonic decreasing function H such that the random variable V, defined by V = H(X), has a density function that is constant on the interval (0,1), and zero otherwise. Now suppose that X is a continuous random variable with density function given by

$$f_X(x) = 1$$
 $0 < x < 1$

and zero otherwise. Find the density functions of the following random variables

(a)
$$Y = X^{1/4}$$
 (b) $W = e^{-X}$ (c) $Z = 1 - e^{-X}$ (d) $U = X(1 - X)$

7. The measured radius of a circle, R, is a continuous random variable with density function given by

$$f_B(r) = 6r(1-r)$$
 $0 < r < 1$

and zero otherwise. Find the density functions of the circumference and the area of the circle.

- 8. Suppose that X is a continuous random variable, and that the cdf of X, F_X , is a one-to-one function. Show that the random variable $Y = F_X(X)$ has a pdf that is constant on the interval (0,1), and zero elsewhere.
- 9.* Suppose that X is a continuous random variable with density function given by

$$f_X(x) = \frac{\alpha}{\beta} \left(1 + \frac{x}{\beta} \right)^{-(\alpha+1)} \qquad x > 0$$

for constants $\alpha, \beta > 0$, and zero otherwise. Find the density function and cdf of the random variable defined by $Y = \ln X$, and the density function of the random variable defined by $Z = \xi + \theta Y$.

 10^* . Continuous random variable X has range (a,b), and pdf given by

$$f_X(x) = k(x-a)(b-x) \quad a < x < b$$

and zero otherwise, for some constant k.

- (i) Sketch f_X , and compute the value of k.
- (ii) Find the pdf of random variable Y defined by Y = (X a)/(b a).
- (iii) Find the pdf of random variable Z defined by Z = Y(1 Y).