M2S1 - EXERCISES 0

Some revision of set theory material with extensions; material **NOT EXAMINABLE**, but a reminder of some notation.

- 1. Consider events E and F in sample space Ω . Show that
 - (i) $E \cap \emptyset \equiv \emptyset, E \cup \emptyset \equiv E$
 - (ii) $E \cap \Omega \equiv E, E \cup \Omega \equiv \Omega$
 - (iii) $(E \cap F)' \equiv E' \cup F'$, $(E \cup F)' \equiv E' \cap F'$,
 - (iv) $E \subseteq F \Longrightarrow E' \supseteq F'$
 - (v) $E \subseteq F \Longrightarrow E \cap F \equiv E, E \cup F \equiv F$

Hint: For two events A, B, to show $A \equiv B$ you must show that $\omega \in A \iff \omega \in B$.

- 2. Suppose that sample space Ω comprises a finite list of elements, that is, $\Omega = \{\omega_1, ..., \omega_k\}$, say. How many distinct events can be defined on Ω ?
- 3. A collection of subsets, \mathcal{A} , of sample space Ω , say $\mathcal{A} = \{A_1, A_2, ...\}$ is a called a σ -algebra (sigma-algebra) if

$$(\mathrm{I}) \ \ \Omega \in \mathcal{A} \qquad (\mathrm{II}) \ \ A \in \mathcal{A} \implies A^{'} \in \mathcal{A} \qquad (\mathrm{III}) \ \ A_{1}, A_{2}, \ldots \in \mathcal{A} \implies \bigcup_{i=1}^{\infty} A_{i} \in \mathcal{A}$$

Consider sample space Ω . What is the smallest σ -algebra of subsets of Ω ? (that is, what is the smallest set of subsets of Ω for which the three conditions hold?) Hint: consider the three conditions (I), (II), (III) in turn.

- 4. (i) A coin is tossed once. Write down the sample space Ω , and find σ -algebra of subsets of Ω .
 - (ii) Suppose that sample space Ω is countable. Show that the set of all subsets of Ω is a σ -algebra.
- 5. (a) Consider a measurement experiment where sample outcomes can take any positive real value, so that $\Omega \equiv \mathbb{R}^+$. Consider the events $\{A_k\}$ defined, for integer $k \geq 1$, by saying that A_k occurs if the measurement lies in the interval (k-1,k]".

Verify that $\{A_k\}$ forms a partition of Ω , and that the set \mathcal{A} whose elements are countable unions of elements of the sequence $\{A_k\}$, plus \emptyset , is a σ -algebra.

- (b) Consider a measurement experiment where sample outcomes can take any real value, so that $\Omega = \mathbb{R}$. Consider the collection of events (intervals) of the form $A_i = (-\infty, a_i]$ where a_i is a real number.
- (i) Show that all real intervals of the form

$$[a, b], (a, b], [a, b), (a, b)$$
 $a, b \in \mathbb{R}$

can be expressed as unions and intersections of intervals of the form of A_i , and their complements

(ii) Show that the set \mathcal{A} whose elements are countable unions or countable intersections of intervals of the form of A_i and their complements, plus \emptyset , is a σ -algebra.

M2S1 EXERCISES 0: page 1 of 1