M2S1 - ASSESSED COURSEWORK 2

To be handed in no later than Friday, 22nd November For this coursework, MAPLE may NOT be used.

(a)	The joint pdf for continuous random variables X an	$\operatorname{ad} Y$ with	h ranges $X \equiv Y$	$\equiv \mathbb{R}^+$ is given by
	$f_{X,Y}(x,y) = c_1(x+2y) \exp\left\{-\frac{1}{2}\left(x+2y\right)\right\}$	$\{(x+y)\}$	x, y > 0	

and zero otherwise for some constant c_1 .

(i) Find the value of c_1

[2 MARKS]

(ii) Find the marginal pdfs of X and Y, f_X and f_Y

[4 MARKS]

(iii) Find the probability

[2 MARKS]

(b) The joint pdf for continuous random variables X,Y and Z with ranges $\mathbb{X} \equiv \mathbb{Y} \equiv \mathbb{Z} \equiv (0,1)$ is given by

$$f_{X,Y,Z}(x,y,z) = c_2 xyz$$
 $0 < x,y,z < 1$

and zero otherwise for some constant c_2 .

(i) Find the value of c_2

[2 MARKS]

(ii) Find the probability

[3 MARKS]

(iii) Find the probability

 $[1\ MARK]$

(c) The joint pdf for continuous random variables X and Y is given by

$$f_{X,Y}(x,y) = c_3 \exp\{-2x - y\}$$
 $0 < x < y < \infty$

and zero otherwise for some constant c_3 .

(i) Find the marginal pdfs of X and Y, f_X and f_Y (with normalizing constants explicitly stated)

[4 MARKS]

(ii) Are X and Y independent random variables? Justify your answer.

[2 MARKS]

NOTE: WHEN REPORTING A PDF, YOU SHOULD STATE EXPLICITLY THE REGION OF \mathbb{R} (OR \mathbb{R}^k) ON WHICH THE FUNCTION IS POSITIVE.