
M2S1 - EXERCISES 7: SOLUTIONS

1. Key is to find the i.i.d random variables X1, ..., Xn such that

X =
n∑

i=1

Xi

and then to use the Central Limit Theorem result for large n

Zn =

n∑
i=1

Xi − nµ

√
nσ2

→ Z ∼ Normal(0, 1) so that X =
n∑

i=1

Xi ∼ Normal(nµ, nσ2) approximately

where µ =EfX
[Xi] and σ2 =VarfX

[Xi]

(i) X ∼ Binomial(n, θ) =⇒ X =
n∑

i=1
Xi where Xi ∼ Bernoulli(θ) so that µ =EfX

[Xi] = θ and

σ2 =VarfX
[Xi] = θ(1− θ) and hence

Zn =

n∑
i=1

Xi − nθ

√
nθ(1− θ)

∼ Normal(0, 1) =⇒ X ∼ Normal(nθ, nθ(1− θ)) approximately

(ii) X ∼ Poisson(λ) =⇒ X =
n∑

i=1
Xi where Xi ∼ Poisson (λ/n) so that µ =EfX

[Xi] = λ/n and

σ2 =VarfX
[Xi] = λ/n and hence

Zn =

n∑
i=1

Xi − n
λ

n√
n (λ/n)

=

n∑
i=1

Xi − λ

√
λ

∼ Normal(0, 1) =⇒ X ∼ Normal(λ, λ) approximately

Note that this uses the result that the sum of independent Poisson variables also has a Poisson
distribution (proved using mgfs), and also note that this is in agreement with the mgf limit result
for the “standardized” Poisson example given in lectures.

(iii) X ∼ NegBinomial(n, θ) =⇒ X =
n∑

i=1
Xi where Xi ∼ Geometric(θ) so that µ =EfX

[Xi] = 1/θ

and σ2 =VarfX
[Xi] = (1− θ) /θ2 and hence

Zn =

n∑
i=1

Xi − n
1
θ√

n
(
(1− θ) /θ2

) ∼ Normal(0, 1) =⇒ X ∼ Normal

(
n

θ
,
n(1− θ)

θ2

)
approximately

(iv) X ∼ Gamma(α, β) =⇒ X =
n∑

i=1
Xi where Xi ∼ Gamma

(α

n
, β

)
so that µ =EfX

[Xi] =
α

nβ
and

σ2 =VarfX
[Xi] =

α

nβ2 and hence

Zn =

n∑
i=1

Xi − n
α

nβ√
nα/

(
nβ2

) =

n∑
i=1

Xi − α

β√
α/β2

∼ Normal(0, 1) =⇒ X ∼ Normal

(
α

β
,

α

β2

)
approximately

This is essentially the mgf limit result for the “standardized” Gamma example given in lectures
in the special case β = 1.
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2. Yn = max {X1, ..., Xn} so in the limit as n →∞ we have the limit for fixed y as

FYn(y) = {FX(y)}n = yn →
{

0 y < 1
1 y ≥ 1

that is, a step function with single step of size 1 at y = 1. Hence the limiting random variable Y
is a discrete variable with P [Y = 1] = 1, that is, the limiting distribution is degenerate at 1. For
Zn = min {X1, ..., Xn} so in the limit as n →∞ we have the limit for fixed z as

FZn(z) = 1− {1− FX(z)}n = 1− (1− z)n →
{

0 z ≤ 0
1 z > 0

that is, a step function with single step of size 1 at z = 0. Hence the limiting random variable Z is a
discrete variable with P [Z = 0] = 1, that is, the limiting distribution is degenerate at 0. Note here that
the limiting function is not a cdf as it is not right-continuous, but that the limiting distribution does
still exist - the ordinary definition of convergence in distribution only refers to pointwise convergence
at points of continuity of the limit function, and here is limit function is not continuous at zero.

Note that these results are intuitively reasonable as, as the sample size gets increasingly large, we will
obtain a random variable arbitrarily close to each end of the range. Note also that these results describe
convergence in distribution, but also we have for 1 > ε > 0

P [|Yn − 1| < ε] = P [1− Yn < ε] = P [1− ε < Yn] = 1− P [Yn < 1− ε] = 1− εn → 1
P [|Zn − 0| < ε] = P [Zn < ε] = 1− (1− ε)n → 1

as n →∞

so we also have convergence in probability of Yn to 1 and of Zn to 0

3. Zn = min {X1, ..., Xn} so

FZn(z) = 1− {1− FX(z)}n = 1−
(

1−
(

1− 1
z

))n

= 1− 1
zn

z > 1

and so, in the limit as n →∞ we have the limit for fixed z as

FZn(z) →
{

0 z ≤ 1
1 z > 1

that is, a step function with single step of size 1 at z = 1. Hence the limiting random variable Z is a
discrete variable with

P [Z = 1] = 1

that is, the limiting distribution is degenerate at 1. Again, the limiting function is not a cdf as it not
right continuous, but this does not affect our conclusion, as the limit function is not continuous at 1.

Now if Un = Zn
n , we have from first principles that for u > 1

FUn(u) = P [Un ≤ u] = P [Zn
n ≤ u] = P

[
Zn ≤ u1/n

]
= 1− 1(

u1/n
)n = 1− 1

u

which is a valid cdf, but which does not depend on n. Hence the limiting distribution of Un is precisely

FU (u) = 1− 1
u

u > 1

For u ≤ 1, FUn(u) = 0 for all n, so clearly FUn(u) −→ 0 for u in this range. Hence the limiting
distribution function is continuous at u = 1 (indeed, at all u).
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4. Yn = max {X1, ..., Xn} so

FYn(y) = {FX(y)}n =
(

1
1 + e−y

)n

y ∈ R

and so, in the limit as n →∞ we have the limit for fixed y as

FYn(y) → 0 for all y

Hence there is no limiting distribution.

If Un = Yn − log n, we have from first principles that for u > − log n

FUn(u) = P [Un ≤ u] = P [Yn − log n ≤ u] = P [Yn ≤ u + log n] = FYn(u + log n) =
(

1
1 + e−u−log n

)n

so that

FUn(u) =


 1

1 +
e−u

n




n

=
(

1 +
e−u

n

)−n

→ exp
{−e−u

}
as n →∞

which is a valid cdf. Hence the limiting distribution is

FU (u) = exp
{−e−u

}
u ∈ R

5. Yn = max {X1, ..., Xn} so

FYn(y) = {FX(y)}n =
(

λy

1 + λy

)n

y > 0

and so, in the limit as n →∞ we have the limit for fixed y as

FYn(y) → 0 for all y

Hence there is no limiting distribution.

Zn = min {X1, ..., Xn} so in the limit as n →∞ we have the limit for fixed z > 0 as

FZn(z) = 1− {1− FX(z)}n = 1−
(

1−
(

1− 1
1 + λz

))n

= 1− 1
(1 + λz)n

→
{

0 z ≤ 0
1 z > 0

that is, a step function with single step of size 1 at z = 0. Hence the limiting random variable Z is a
discrete variable with P[Z = 0] = 1 that is, the limiting distribution is degenerate at 0. Again, the
limiting function is not a cdf as it not right continuous, but this does not affect our conclusion, as the
limit function is not continuous at 0.

If Un = Yn/n, we have from first principles that for u > 0

FUn(u) = P [Un ≤ u] = P [Yn/n ≤ u] = P [Yn ≤ nu] = FYn(nu) =
(

λnu

1 + λnu

)n

so that

FUn(u) =
(

λnu

1 + λnu

)n

=
(

1 +
1

nλu

)−n

→ exp
{
− 1

λu

}
as n →∞

which is a valid cdf. Hence the limiting distribution is

FU (u) = exp
{
− 1

λu

}
u > 0
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If Vn = nZn, we have from first principles that for u > 0

FVn(v) = P [Vn ≤ v] = P [nZn ≤ v] = P [Zn ≤ v/n] = FZn(v/n) = 1−


 1

1 +
λv

n




n

so that

FVn(v) = 1−
(

1 +
λv

n

)−n

= 1−
(

1 +
λv

n

)−n

→ 1− exp {−λv} as n →∞

which is a valid cdf. Hence the limiting distribution is

FV (v) = 1− exp {−λv} v > 0

Hence the limiting random variable V ∼ Exponential(λ).

Yn = max {X1, ..., Xn} so

FYn(y) = {FX(y)}n = (1− e−λy)n y > 0

6. Xi ∼ Poisson(λ) so
n∑

i=1

Xi ∼ Poisson(nλ) by mgfs and hence (by Q1 result) using the Central

Limit Theorem,
n∑

i=1

Xi ∼ Normal(nλ, nλ) approximately

and hence

X =
1
n

n∑

i=1

Xi ∼ Normal

(
λ,

λ

n

)
approximately

and hence, for ε > 0

P
[∣∣X − λ

∣∣ < ε
]

= P
[
λ− ε < X < λ + ε

] ≈ Φ

(
ε√
λ/n

)
− Φ

(
−ε√
λ/n

)
→ 1

as n →∞. Hence, X converges in probability to λ

X
p→ λ

Now, if Tn = exp {−Mn}, then for ε > 0 we have

P
[∣∣∣Tn − e−λ

∣∣∣ < ε
]

= P
[
e−λ − ε < Tn < e−λ + ε

]
= P

[
− log(e−λ + ε) < Mn < − log(e−λ − ε)

]

and hence

P
[∣∣∣Tn − e−λ

∣∣∣ < ε
]
≈ Φ

(
− log(e−λ − ε)− λ√

λ/n

)
− Φ

(
− log(e−λ + ε)− λ√

λ/n

)
→ 1

as n →∞. Hence, Tn converges in probability to e−λ.
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