M2S1 - EXERCISES 5: SOLUTIONS

1. To compute the covariance need first the marginal expectations of X and Y. The key part of the solution is to realize that the support of the joint density is

$$
0<x<1,0<y<1,0<x+y<1
$$

that is, the "lower left corner" triangle of the unit square, bounded by the three lines

$$
x=0, y=0, x+y=1
$$

Now, for $0<x<1$,

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y=\int_{0}^{1-x} c x y(1-x-y) d y=c x \int_{0}^{1-x} y(1-x-y) d y \\
& =c x(1-x)^{3} \int_{0}^{1} t(1-t) d t \quad(\text { setting } t=y /(1-x)) \\
& =\frac{c}{6} x(1-x)^{3} \quad 0<x<1
\end{aligned}
$$

and

$$
\int_{-\infty}^{\infty} f_{X}(x) d x=\int_{0}^{1} \frac{c}{6} x(1-x)^{3} d x=1 \Longrightarrow c=120
$$

and hence

$$
\begin{aligned}
f_{X}(x) & =20 x(1-x)^{3} \quad 0<x<1 \\
\therefore \mathrm{E}_{f_{X}}[X] & =\int_{0}^{1} 20 x^{2}(1-x)^{3} d x=\frac{1}{3}
\end{aligned}
$$

and, by symmetry of form, $f_{Y}(y)=20 y(1-y)^{3}(0<y<1)$, $\mathrm{E}_{f_{Y}}[Y]=\frac{1}{3}$ by symmetry of form of the joint pdf. Also

$$
\begin{aligned}
\mathrm{E}_{f_{X, Y}}[X Y] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X, Y}(x, y) d x d y=\int_{0}^{1}\left\{\int_{0}^{1-y} 120 x^{2} y^{2}(1-x-y) d x\right\} d y \\
& =\int_{0}^{1} 120 y^{2}\left\{\int_{0}^{1-y} x^{2}(1-x-y) d x\right\} d y \\
& =\int_{0}^{1} 120 y^{2}\left[\frac{x^{3}}{3}(1-y)-\frac{x^{4}}{4}\right]_{0}^{1-y} d y \\
& =\int_{0}^{1} 10 y^{2}(1-y)^{4} d y \\
& =10\left[\frac{y^{3}}{3}-y^{4}+\frac{6 y^{5}}{5}-\frac{4 y^{6}}{6}+\frac{y^{7}}{7}\right]_{0}^{1}=10\left(\frac{1}{3}-1+\frac{6}{5}-\frac{2}{3}+\frac{1}{7}\right)=\frac{2}{21}
\end{aligned}
$$

and hence

$$
\operatorname{Cov}_{f_{X, Y}}[X, Y]=\mathrm{E}_{f_{X, Y}}[X Y]-\mathrm{E}_{f_{X}}[X] . \mathrm{E}_{f_{Y}}[Y]=\frac{2}{21}-\frac{1}{3} \cdot \frac{1}{3}=-\frac{1}{63}
$$

2. (a) We will first construct the solutions using a dummy variable Z.

First, put $U=X / Y$ and $Z=X$; the inverse transformations are therefore $X=Z$ and $Y=Z / U$, and note that the new variables are constrained by $0<Z<\min \{U, 1\}$, as $Y<1$. In terms of the multivariate transformation theorem, we have transformation functions defined by

$$
\begin{array}{ll}
g_{1}\left(t_{1}, t_{2}\right)=t_{1} / t_{2} & g_{1}^{-1}\left(t_{1}, t_{2}\right)=t_{2} \\
g_{2}\left(t_{1}, t_{2}\right)=t_{1} & g_{2}^{-1}\left(t_{1}, t_{2}\right)=t_{2} / t_{1}
\end{array}
$$

and the Jacobian of the transformation is given by

$$
|J(u, z)|=\left|\begin{array}{cc}
0 & 1 \\
-z / u^{2} & 1 / u
\end{array}\right|=\frac{z}{u^{2}}
$$

and hence

$$
f_{U, Z}(u, z)=f_{X, Y}(z, z / u) z / u^{2}=z / u^{2} \quad(u, z) \in \mathbb{U}^{(2)} \equiv\{(u, z): 0<z<\min \{u, 1\}, u>0\}
$$

and zero otherwise, and so

$$
f_{U}(u)=\int_{-\infty}^{\infty} f_{U, Z}(u, z) d z=\int_{0}^{\min \{u, 1\}} z / u^{2} d z=\frac{(\min \{u, 1\})^{2}}{2 u^{2}} \quad u>0
$$

Now, for V, put $V=-\log (X Y)$ and $Z=-\log X$; the inverse transformations are therefore $X=e^{-Z}$ and $Y=e^{-(v-z)}$, and note that $0<Z<V$. In terms of the theorem, we have transformation functions defined by

$$
\begin{array}{ll}
g_{1}\left(t_{1}, t_{2}\right)=-\log \left(t_{1} t_{2}\right) & g_{1}^{-1}\left(t_{1}, t_{2}\right)=e^{-t_{2}} \\
g_{2}\left(t_{1}, t_{2}\right)=-\log t_{1} & g_{2}^{-1}\left(t_{1}, t_{2}\right)=e^{-\left(t_{1}-t_{2}\right)}
\end{array}
$$

and the Jacobian of the transformation is given by

$$
|J(v, z)|=\left|\begin{array}{cc}
0 & -e^{-z} \\
-e^{-(v-z)} & e^{-(v-z)}
\end{array}\right|=e^{-v}
$$

and hence

$$
f_{V, Z}(v, z)=f_{X, Y}\left(e^{-z}, e^{-(v-z)}\right) e^{-v}=e^{-v} \quad(v, z) \in \mathbb{V}^{(2)} \equiv\{(v, z): 0<z<v<\infty\}
$$

and zero otherwise, and so

$$
f_{V}(v)=\int_{-\infty}^{\infty} f_{V, Z}(v, z) d z=\int_{0}^{v} e^{-v} d z=v e^{-v} \quad v>0
$$

and zero otherwise.
Now we can attempt the joint transformation to demonstrate that the same results are obtained. We set

$$
\begin{aligned}
& U=X / Y \\
& V=-\log (X Y)
\end{aligned} \Longleftrightarrow \begin{aligned}
& X=U^{1 / 2} e^{-V / 2} \\
& Y=U^{-1 / 2} e^{-V / 2}
\end{aligned}
$$

note that, as X and Y lie in $(0,1)$ we have $X Y<X / Y$ and $X Y<Y / X$, giving constraints $e^{-V}<U$ and $e^{-V}<1 / U$, so that $0<e^{-V}<\min \{U, 1 / U\}$. The Jacobian of the transformation is

$$
|J(u, v)|=\left|\begin{array}{cc}
\frac{u^{-1 / 2} e^{-v / 2}}{2} & -\frac{u^{1 / 2} e^{-v / 2}}{2} \\
-\frac{u^{-3 / 2} e^{-v / 2}}{2} & -\frac{u^{-1 / 2} e^{-v / 2}}{2}
\end{array}\right|=u^{-1} e^{-v} / 2
$$

Hence

$$
f_{U, V}(u, v)=u^{-1} e^{-v} / 2 \quad 0<e^{-v}<\min \{u, 1 / u\}, u>0
$$

The corresponding marginals are given below: let $g(y)=-\log (\min \{u, 1 / u\})$, then

$$
\begin{aligned}
& f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) d v=\int_{g(y)}^{\infty} \frac{e^{-v}}{2 u} d v=\left[-\frac{e^{-v}}{2 u}\right]_{g(y)}^{\infty}=\frac{\min \{u, 1 / u\}}{2 u} \quad u>0 \\
& f_{V}(v)=\int_{-\infty}^{\infty} f_{U, V}(u, v) d u=\int_{e^{-v}}^{e^{v}} \frac{e^{-v}}{2 u} d u=\left[\frac{\log u}{2} e^{-v}\right]_{e^{-v}}^{e^{v}}=v e^{-v} \quad v>0
\end{aligned}
$$

(b) Now let

$$
\begin{array}{lll}
V=X+Y \\
Z=X-Y & \Longleftrightarrow & X=\frac{V+Z}{2} \\
& Y=\frac{V-Z}{2}
\end{array}
$$

and the Jacobian of the transformation is $1 / 2$. The transformed variables take values on the square A in the (V, Z) plane with corners at $(0,0),(1,1),(2,0)$ and $(1,-1)$ bounded by the lines $z=-v, z=2-v$, $z=v$ and $z=v-2$. Then

$$
f_{V, Z}(v, z)=\frac{1}{2} \quad(v, z) \in A
$$

and zero otherwise (hint: sketch the square A). Hence, integrating in horizontal strips in the (V, Z) plane,

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{V, Z}(v, z) d v=\left\{\begin{array}{cc}
\int_{-z}^{2+z} \frac{1}{2} d v=1+z & -1<z \leq 0 \\
\int_{z}^{2-z} \frac{1}{2} d v=1-z & 0<z<1
\end{array}\right.
$$

3. The transformations are

$$
\begin{aligned}
& Y_{1}=\frac{X_{1}}{X_{1}+X_{2}+X_{3}} \\
& Y_{2}=\frac{X_{1}}{X_{1}+X_{2}+X_{3}} X_{1}=Y_{1} Y_{3} \\
& X_{2}=Y_{2} Y_{3} \\
& X_{3}=Y_{3}\left(1-Y_{1}-Y_{2}\right)
\end{aligned}
$$

which gives Jacobian

$$
\left|J\left(y_{1}, y_{2}, y_{3}\right)\right|=\left|\begin{array}{rrc}
y_{3} & 0 & y_{1} \\
0 & y_{3} & y_{2} \\
-y_{3} & -y_{3} & \left(1-y_{1}-y_{2}\right)
\end{array}\right|=y_{3}^{2}
$$

Hence the joint pdf is given by

$$
\begin{aligned}
f_{Y_{1}, Y_{2}, Y_{3}}\left(y_{1}, y_{2}, y_{3}\right) & =f_{X_{1}, X_{2}, X_{3}}\left(y_{1} y_{3}, y_{2} y_{3}, y_{3}\left(1-y_{1}-y_{2}\right)\right)\left|J\left(y_{1}, y_{2}, y_{3}\right)\right| \\
& =c_{1} y_{1} y_{3} \exp \left\{-y_{1} y_{3}\right\} c_{2} y_{2}^{2} y_{3}^{2} \exp \left\{-y_{2} y_{3}\right\} c_{3} y_{3}^{3}\left(1-y_{1}-y_{2}\right)^{3} \exp \left\{-y_{3}\left(1-y_{1}-y_{2}\right)\right\} y_{3}^{2} \\
& =c_{1} c_{2} c_{3} y_{1} y_{2}^{2}\left(1-y_{1}-y_{2}\right)^{3} y_{3}^{8} \exp \left\{-y_{3}\right\}=f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) f_{Y_{3}}\left(y_{3}\right)
\end{aligned}
$$

where

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) \propto y_{1} y_{2}^{2}\left(1-y_{1}-y_{2}\right)^{3} . \quad \text { and } \quad f_{Y_{3}}\left(y_{3}\right) \propto y_{3}^{8} \exp \left\{-y_{3}\right\} ;
$$

in fact, $Y_{3} \sim \operatorname{Gamma}(9,1)$; see Formula Sheet.
The transformations give the constraints $0<Y_{1}, Y_{2}<1$ and $0<Y_{1}+Y_{2}<1$, and $Y_{3}>0$. Now
$f_{Y_{1}}\left(y_{1}\right)=\int_{-\infty}^{\infty} f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) d y_{2}=\int_{0}^{1-y_{1}} c y_{1} y_{2}^{2}\left(1-y_{1}-y_{2}\right)^{3} d y_{2}=c y_{1}\left(1-y_{1}\right)^{6} \int_{0}^{1} t^{2}(1-t)^{3} d t \quad\left(t=y_{2} /\left(1-y_{1}\right)\right)$
and hence

$$
f_{Y_{1}}\left(y_{1}\right) \propto y_{1}\left(1-y_{1}\right)^{6}
$$

and

$$
\int_{0}^{1} y_{1}\left(1-y_{1}\right)^{6}=\left[-\frac{1}{7} y_{1}\left(1-y_{1}\right)^{7}\right]_{0}^{1}+\frac{1}{7} \int_{0}^{1}\left(1-y_{1}\right)^{7} d y_{1}=0+\frac{1}{7}\left[-\frac{1}{8}\left(1-y_{1}\right)^{8}\right]_{0}^{1}=\frac{1}{56}
$$

so that

$$
f_{Y_{1}}\left(y_{1}\right)=56 y_{1}\left(1-y_{1}\right)^{6} \quad 0<y_{1}<1
$$

and hence

$$
\mathrm{E}_{f_{Y_{1}}}\left[Y_{1}\right]=\int_{0}^{1} y_{1} 56 y_{1}\left(1-y_{1}\right)^{6} d y_{1}=56 \int_{0}^{1} y_{1}^{2}\left(1-y_{1}\right)^{6} d y_{1}=\frac{2}{9}
$$

by integrating term by term. In fact $Y_{1} \sim \operatorname{Beta}(2,7)$; see Formula Sheet, and note that the expectation of a $\operatorname{Beta}(\alpha, \beta)$ distribution is $\alpha /(\alpha+\beta)$ from notes.
4. (a) Put $U=X / Y$ and $V=Y$; the inverse transformations are therefore $X=U V$ and $Y=V$. In terms of the multivariate transformation theorem, we have transformation functions defined by

$$
\begin{array}{ll}
g_{1}\left(t_{1}, t_{2}\right)=t_{1} / t_{2} & g_{1}^{-1}\left(t_{1}, t_{2}\right)=t_{1} t_{2} \\
g_{2}\left(t_{1}, t_{2}\right)=t_{2} & g_{2}^{-1}\left(t_{1}, t_{2}\right)=t_{2}
\end{array}
$$

and the Jacobian of the transformation is given by

$$
|J(u, v)|=\left|\begin{array}{ll}
v & u \\
0 & 1
\end{array}\right|=|v|
$$

and hence

$$
f_{U, V}(u, v)=f_{X, Y}(u v, v)|v|=\left(\frac{1}{2 \pi}\right) \exp \left\{-\frac{1}{2}\left(u^{2} v^{2}+v^{2}\right\}|v| \quad(u, v) \in \mathbb{R}^{2}\right.
$$

and zero otherwise, and so, for any real u,

$$
\begin{aligned}
f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) d v & =\int_{-\infty}^{\infty}\left(\frac{1}{2 \pi}\right) \exp \left\{-\frac{1}{2}\left(u^{2} v^{2}+v^{2}\right\}|v| d v\right. \\
& =\left(\frac{1}{\pi}\right) \int_{0}^{\infty} v \exp \left\{-\frac{v^{2}}{2}\left(1+u^{2}\right)\right\} d v \quad \text { as integrand is even function } \\
& =\left(\frac{1}{\pi}\right)\left[-\frac{1}{\left(1+u^{2}\right)} \exp \left\{-\frac{v^{2}}{2}\left(1+u^{2}\right)\right\}\right]_{0}^{\infty}=\frac{1}{\pi\left(1+u^{2}\right)}
\end{aligned}
$$

with the final step following by direct integration.
(b) Now put $T=X / \sqrt{S / \nu}$ and $R=S$; the inverse transformations are therefore $X=T \sqrt{R / \nu}$ and $S=R$. In terms of the multivariate transformation theorem, we have transformation functions from $(X, S) \rightarrow(T, R)$ defined by

$$
\begin{array}{ll}
g_{1}\left(t_{1}, t_{2}\right)=t_{1} / \sqrt{t_{2} / \nu} & g_{1}^{-1}\left(t_{1}, t_{2}\right)=t_{1} \sqrt{t_{2} / \nu} \\
g_{2}\left(t_{1}, t_{2}\right)=t_{2} & g_{2}^{-1}\left(t_{1}, t_{2}\right)=t_{2}
\end{array}
$$

and the Jacobian of the transformation is given by

$$
|J(t, r)|=\left|\begin{array}{cc}
\sqrt{\frac{r}{\nu}} & \frac{t}{2 \sqrt{r \nu}} \\
0 & 1
\end{array}\right|=\left|\sqrt{\frac{r}{\nu}}\right|=\sqrt{\frac{r}{\nu}}
$$

and hence

$$
f_{T, R}(t, r)=f_{X, S}\left(t \sqrt{\frac{r}{\nu}}, r\right) \sqrt{\frac{r}{\nu}}=f_{X}\left(t \sqrt{\frac{r}{\nu}}\right) f_{S}(r) \sqrt{\frac{r}{\nu}} \quad t \in \mathbb{R}, s \in \mathbb{R}^{+}
$$

and zero otherwise, and so, for any real t,

$$
\begin{aligned}
f_{T}(t) & =\int_{-\infty}^{\infty} f_{T, R}(t, r) d r \\
& =\int_{0}^{\infty}\left(\frac{1}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{r t^{2}}{2 \nu}\right\} c(\nu) r^{\nu / 2-1} e^{-r / 2} \sqrt{\frac{r}{\nu}} d r \\
& =\left(\frac{1}{2 \pi}\right)^{1 / 2} \frac{c(\nu)}{\sqrt{\nu}} \int_{0}^{\infty} r^{(\nu+1) / 2-1} \exp \left\{-\frac{r}{2}\left(1+\frac{t^{2}}{\nu}\right)\right\} d r \\
& =\left(\frac{1}{2 \pi}\right)^{1 / 2} \frac{c(\nu)}{\sqrt{\nu}}\left(1+\frac{t^{2}}{\nu}\right)^{-(\nu+1) / 2} \int_{0}^{\infty} z^{(\nu+1) / 2-1} \exp \left\{-\frac{z}{2}\right\} d z \quad \operatorname{setting} z=r\left(1+\frac{t^{2}}{\nu}\right) \\
& =\left(\frac{1}{2 \pi}\right)^{1 / 2} \frac{c(\nu)}{\sqrt{\nu}}\left(1+\frac{t^{2}}{\nu}\right)^{-(\nu+1) / 2} \frac{1}{c(\nu+1)}
\end{aligned}
$$

as the integrand is proportional to a Gamma pdf. We also see/deduce that f_{S} is a $\operatorname{Gamma}(\nu / 2,1 / 2)$ (otherwise known as a Chiquared (ν)) density, and that the normalizing constant $c(\nu)$ is given by

$$
c(\nu)=\frac{\left(\frac{1}{2}\right)^{\nu / 2}}{\Gamma\left(\frac{\nu}{2}\right)} \quad \Longrightarrow \quad f_{T}(t)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)}\left(\frac{1}{\pi \nu}\right)^{1 / 2} \frac{1}{\left(1+t^{2} / \nu\right)^{(\nu+1) / 2}}
$$

which, in fact, is the $\operatorname{Student}(\nu)$ density; see Formula Sheet.
5. We have

$$
f_{X \mid Y}(x \mid y)=\sqrt{\frac{y}{2 \pi}} \exp \left\{-\frac{y x^{2}}{2}\right\} \quad x \in \mathbb{R} \quad f_{Y}(y)=c(\nu) y^{\nu / 2-1} e^{-\nu y / 2} \quad y \in \mathbb{R}^{+}
$$

where ν is a positive integer, so that $X \mid Y=y \sim N\left(0, y^{-1}\right)$ and $Y \sim \operatorname{Gamma}(\nu / 2, \nu / 2)$, and the normalizing constant $c(\nu)$ is given by

$$
c(\nu)=\frac{\left(\frac{\nu}{2}\right)^{\nu / 2}}{\Gamma\left(\frac{\nu}{2}\right)}
$$

Now, by the chain rule

$$
f_{X, Y}(x, y)=f_{X \mid Y}(x \mid y) f_{Y}(y) \quad x \in \mathbb{R}, y \in \mathbb{R}^{+}
$$

and zero otherwise, and so, for any real x,

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y \\
& =\int_{0}^{\infty} \sqrt{\frac{y}{2 \pi}} \exp \left\{-\frac{y x^{2}}{2}\right\} \frac{\left(\frac{\nu}{2}\right)^{\nu / 2}}{\Gamma\left(\frac{\nu}{2}\right)} y^{\nu / 2-1} e^{-\nu y / 2} d y \\
& =\frac{1}{\sqrt{2 \pi}} \frac{\left(\frac{\nu}{2}\right)^{\nu / 2}}{\Gamma\left(\frac{\nu}{2}\right)} \int_{0}^{\infty} y^{(\nu+1) / 2-1} \exp \left\{-\frac{y}{2}\left(\nu+x^{2}\right)\right\} d y \\
& =\frac{1}{\sqrt{2 \pi}} \frac{\left(\frac{\nu}{2}\right)^{\nu / 2}}{\Gamma\left(\frac{\nu}{2}\right)} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\left(\frac{1}{2}\left(\nu+x^{2}\right)\right)^{(\nu+1) / 2}}
\end{aligned}
$$

as the integrand is proportional to a (Gamma) pdf, using a method described earlier in Chapter 2. Therefore f_{X} is given by

$$
f_{X}(x)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)}\left(\frac{1}{\pi \nu}\right)^{1 / 2} \frac{1}{\left(1+x^{2} / \nu\right)^{(\nu+1) / 2}}
$$

which is again the $\operatorname{Student}(\nu)$ density.

Exercises 5 and 6 give the two alternative ways of specifying the Student-t distribution, either as a function of independent Normal and Gamma/Chi-squared variables, or as the marginal obtained by "scale-mixing" a Normal distribution by a Gamma distribution (that is, rather than having a fixed variance $\sigma^{2}=1 / Y$; we regard Y as a random variable having a Gamma distribution, so that (X, Y) have a joint distribution

$$
f_{X, Y}(x, y)=f_{X \mid Y}(x \mid y) f_{Y}(y)
$$

from which we calculate $f_{X}(x)$ by integration.

