M2S1 - EXERCISES 5: SOLUTIONS

1. To compute the covariance need first the marginal expectations of X and Y. The key part of the
solution is to realize that the support of the joint density is

O<zr<l0<y<l,0<z+y<l1
that is, the “lower left corner” triangle of the unit square, bounded by the three lines
xr=0,y=0,x4+y=1.

Now, for 0 < x < 1,

[e’s) 1—x 1—x
fx(x) = / fxy(z,y) dy = /0 cry(l —x —y) dy = cx/o y(1—z—vy) dy

1
=cx(l— :z)?’/o t(1—t)dt (setting t = y/(1 — x))

zgz(l—z)?’ 0<z<1
and . )
/ Fx(z) dx:/ %:;(1—3;)3 do =1=>c=120
oo 0
and hence
fx(x) = 20x(1—-2)®* O<az<l1
! 1
SERIX] = / 2022 (1 — )3 dx = 3
0

1
and, by symmetry of form, fy(y) =20y(1—y)®> (0 <y <1), Ep[Y ]| = 3 by symmetry of form of the
joint pdf. Also

00 00 1 1—y
Efey[ XY] =/ / zyfxy(x,y) dedy =/ {/ 12022y (1 -z — y) dx} dy
o) —oo o Uo

1 1-y
—/1203/2{/ 23(1 -z —y) dw}dy
0 0
1 3 471~y
x x
= [ 12007 | % (1—y) — = d
/0 y [3( y) 4]0 y

1
= / 10y%(1 — y)* dy
0

and hence
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2. (a) We will first construct the solutions using a dummy variable Z.

First, put U = X/Y and Z = X; the inverse transformations are therefore X = Z and Y = Z/U,
and note that the new variables are constrained by 0 < Z < min{U, 1}, as Y < 1. In terms of the
multivariate transformation theorem, we have transformation functions defined by

g1(t,ta) = 1/t g1ty t2) =t
g2(t1,t2) =t 93 (t1,t2) = t2/ta
and the Jacobian of the transformation is given by
0 1
1 (u,2)| = =5
—z/u? 1/u Y

and hence
fuz(u, 2) = fxy (2 2/u) z/u* = z/u? (u,2) € U = {(u,2): 0 < z < min{u,1} ,u > 0}
and zero otherwise, and so

0o min{u,1} : 2
fu(u) —/_ fuz(u,z) dz _/0 1 z/u? dz = (min {u, 1})” u > 0.

2u?

Now, for V, put V = —log(XY) and Z = —log X; the inverse transformations are therefore X = e=%

and Y = e~ (*=2)_and note that 0 < Z < V. In terms of the theorem, we have transformation functions
defined by

g1(t1,t2) = —log(t1t2) g 'ty t) = e
g2(t1,t2) = —logty gz (t1,t2) = e~ (17"
and the Jacobian of the transformation is given by
0 —e” 7
|J(v,2)| = =e’

and hence
fvz(v,z) = ny(e*Z,e*(”*Z)) e V=¢e" (v,2) e V) = {(v,2) : 0 < 2 < v < o0}

and zero otherwise, and so

fv(v) = / fvz(v,z) dz = / eV dz=ve " v>0
—o0 0

and zero otherwise.

Now we can attempt the joint transformation to demonstrate that the same results are obtained.

We set
U=X/Y X = J1/2e-V/2
— /3 _
V = —log(XY) Y = U127 V/2

note that, as X and Y lie in (0,1) we have XY < X/Y and XY < Y/X, giving constraints e™" < U
and e™V < 1/U, so that 0 < e™¥ < min {U,1/U}. The Jacobian of the transformation is

u—1/2e—v/2 ul/Qe—v/2
2 2 .
| J(u,v)| = =ute?/2.
u—3/26—v/2 u—l/Qe—v/Z
B 2 - 2
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Hence
fov(u,v) =u"te7v/2 0<e?<min{u,1l/u}, u>0

The corresponding marginals are given below: let g(y) = — log(min {w,1/u}), then
- 1
:/ fov(u,v) dv = - [ ] _ min {2u Ju} w0
- 9(v) u
> logu _ Y
= fov (u,v) du_ _ — ve 0> 0
—0o0 ' —v 2'I,L
(b) Now let
V+Z
V=X+Y X=—
—
Z=X-Y v V—-Z
2

and the Jacobian of the transformation is 1/2. The transformed variables take values on the square A in
the (V, Z) plane with corners at (0,0), (1,1), (2,0) and (1, —1) bounded by the lines z = —v, z = 2 — v,
z=wvand z =v — 2. Then )

fvz(v,z) = 3 (v,2) € A

and zero otherwise (hint: sketch the square A). Hence, integrating in horizontal strips in the (V, Z)
plane,

24z
/ —dv =1+z2 —1<2<0
o0 _, 2
z) = / fvz(v,z) dv=
—0 2—z 1
/ —dv =1-2z2 O<zx1
. 2
3. The transformations are
Vi ol
1_X1+X2—|-X3 X1 =Y"Y3
Y, = X1 — X9y =Y9)YV3
X1+ X9+ X3

X3=Y3(1-Y; - Y5)
Yy =X1+ X2+ X3

which gives Jacobian
Y3 0 Y1

|J(y1,y2,y3)| = 0 s Y2 =13

—ys —ys (L—v1—y2)
Hence the joint pdf is given by

i Ye,vs (W1, 92, U3) = fxi, X0, x5 (U193, y2u3, y3(1 — y1 — v2)) [ (y1, 2, y3)|
= c1y1y3exp {—y1ys} coydy2exp{—yays} cays(l —y1 —y2)3exp {—ys(1 —y1 — y2)} 2

= creaesy1ys (1 — v — v2)® v exp{—vs} = fvivo (Y1, ¥2) fys (y3)
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where
friye (Wi, y2) < y1ya (1 —y1 —y2)®.  and fys (y3) o< y§ exp {—y3};

in fact, Y3 ~ Gamma(9,1); see Formula Sheet.

The transformations give the constraints 0 < Y7,Y> <1 and 0 < Y; +Ys < 1, and Y3 > 0. Now

e’} 1-y1 1
fyi (1) = / Friva (s ) dys = /O ey (1—y1—yo)? dys = eyr (1—y1)° /O 2Ot dt (¢ =ya/(1-y))

and hence
Fri(yr) o<y (1= y1)°
and

1

/01 yi(1—y1)° = [—;yl(l _y1)7] N ;/01(1 )y = 0+% [_1(1 —yl)s]l 1

0 8 . 56
so that
fri(y) =56y1(1—y1)®  O<y<1
and hence
1 1
6 2 6 2
By (] = [ 56— dp =56 [ i - ) dys = ¢

by integrating term by term. In fact Y3 ~ Beta(2,7); see Formula Sheet, and note that the expectation
of a Beta(a, 3) distribution is a/(a + (3) from notes.

4. (a) Put U = X/Y and V =Y; the inverse transformations are therefore X = UV and Y = V. In
terms of the multivariate transformation theorem, we have transformation functions defined by

g1(t1,t2) = t1/t2 g7 Htr, ) = tity

g2(t1,t2) = t2 gy H(t1,ta) = to

and the Jacobian of the transformation is given by

and hence

fuwu,0) = fesrtun) bl = (5 ) e {-Je2 4o bl o) er?

and zero otherwise, and so, for any real u,

fot) = [ ooy ao = [ (;ﬂ) exp {1022 1 0} o] dv

—0o0

1

oo 2
= (> / v exp {02(1 + u2)} dv as integrand is even function
T 0

() Famer a2, -
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with the final step following by direct integration.

(b) Now put T'= X/,/S/v and R = S; the inverse transformations are therefore X = T'\/R/v and
S = R. In terms of the multivariate transformation theorem, we have transformation functions from
(X,8) — (T, R) defined by

gi(t1,t2) = t1/\/ta /v 97 (1, t2) = ti\/ta /v

g2(t1,t2) = t2 gy Ht1,t2) = ta

and the Jacobian of the transformation is given by
]
Vv

t
2/ | _ | T
1=l
frr(t,r) = fxs <t\[, T) \/j fx (t\/j> fs (r) \/Z teR,seR"

and zero otherwise, and so, for any real ¢,

frt) = /O;fT,R(t?T) dr
= /OOO <2177)1/2 exp {—gj} c(V)r”/21er/2\/j dr
)L e )
_ (217T> 1/2 c\(/ya) <1 N tj) —(v+1)/2 /OOOZ(V+1)/2—1 exp{—g} dz setting z=r (1 i tj)

- () : A t2> o D

[J(t,7)] =

o
o

and hence

R

as the integrand is proportional to a Gamma pdf. We also see/deduce that fg is a Gamma(v/2,1/2)
(otherwise known as a Chiquared(r)) density, and that the normalizing constant ¢(v) is given by

c(v) = <;>V/2 = fr(t) = F<V—2H> ( 1 )1/2( 1

(3 () )

which, in fact, is the Student(v) density; see Formula Sheet.

5. We have
Y y.’l?2 v/2—1_—vy/2 +
Fxy (@ly) =[5 -exp =75~ reR fy(y) =cv)y”’" e yeR

where v is a positive integer, so that X|Y = y ~ N(0,y!) and Y ~ Gamma(v/2,v/2), and the
normalizing constant ¢(v) is given by
(z>y/2
e(v) = -2

r(3)
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Now, by the chain rule
fxy(@y) = fxy(ely)fyr(y)  zeRyeR?

and zero otherwise, and so, for any real x,

fx(x) Z/io fxy(z,y) dy

fe'e) 2 v\v/2
— v _yx (f) v/2—1_—vy/2
_/01/27Texp{ 5 }F(;)y e dy

1

Var T (3)
1w
V2T T (5) (L (vt a2) DR

[e.e] Y . y
/o yv1)/2 1exp{—5 (V+x2)} dy

as the integrand is proportional to a (Gamma) pdf, using a method described earlier in Chapter 2.
Therefore fx is given by

_ ) ( 1 )1/ ’ 1
fX(x) - F (%) v (1 + xQ/V)(V—l-I)/Q
which is again the Student(v) density.

Exercises 5 and 6 give the two alternative ways of specifying the Student-t distribution, either as a
function of independent Normal and Gamma/Chi-squared variables, or as the marginal obtained by
“scale-mizing” a Normal distribution by a Gamma distribution (that is, rather than having a fixed
variance o2 = 1/Y; we regard Y as a random variable having a Gamma distribution, so that (X,Y)
have a joint distribution

Ixy(z,y) = fxy(@ly) fv(y)

from which we calculate fx(z) by integration.
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