M2S1 - EXERCISES 4: SOLUTIONS

1. The cdf of X, F_{X} is given by

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t=\int_{0}^{x} 4 t^{3} d t=x^{4} \quad 0<x<1 .
$$

(a) $Y=X^{4}$, so $\mathbb{Y}=(0,1)$, and from first principles, for $y \in \mathbb{Y}$,

$$
F_{Y}(y)=\mathrm{P}[Y \leq y]=\mathrm{P}\left[X^{4} \leq y\right]=\mathrm{P}\left[X \leq y^{1 / 4}\right]=F_{X}\left(y^{1 / 4}\right)=y \quad \Longrightarrow f_{Y}(y)=1 \quad 0<y<1
$$

(b) $W=e^{X}$, so $\mathbb{W}=(1, e)$, and from first principles, for $w \in \mathbb{W}$,

$$
\begin{aligned}
F_{W}(w) & =\mathrm{P}[W \leq w]=\mathrm{P}\left[e^{X} \leq w\right]=\mathrm{P}[X \leq \log w]=F_{X}(\log w)=(\log w)^{4} \\
& \Longrightarrow \quad f_{W}(w)=\frac{4(\log w)^{3}}{w} \quad 1<w<e
\end{aligned}
$$

(c) $Z=\log X$, so $\mathbb{Z}=(-\infty, 0)$, and from first principles, for $z \in \mathbb{Z}$,

$$
F_{Z}(z)=\mathrm{P}[Z \leq z]=\mathrm{P}[\log X \leq z]=\mathrm{P}\left[X \leq e^{z}\right]=F_{X}\left(e^{z}\right)=e^{4 z} \Longrightarrow f_{Z}(z)=4 e^{4 z} \quad-\infty<z<0
$$

(d) $U=(X-0.5)^{2}$, so $\mathbb{U}=(0,0.25)$, and from first principles, for $u \in \mathbb{U}$,

$$
\begin{aligned}
F_{U}(u) & =\mathrm{P}[U \leq u]=\mathrm{P}\left[(X-0.5)^{2} \leq u\right]=\mathrm{P}[-\sqrt{u}+0.5 \leq X \leq \sqrt{u}+0.5] \\
& =F_{X}(\sqrt{u}+0.5)-F_{X}(-\sqrt{u}+0.5)=(0.5+\sqrt{u})^{4}-(0.5-\sqrt{u})^{4} \\
\Longrightarrow f_{U}(u) & =\frac{2}{\sqrt{u}}\left[(0.5+\sqrt{u})^{3}+(0.5-\sqrt{u})^{3}\right]=\frac{1+12 u}{2 \sqrt{u}} \quad 0<u<0.25
\end{aligned}
$$

To find the decreasing function H on $(0,1)$; need $F_{V}(v)=v, 0<v<1$, that is, need

$$
\begin{aligned}
\mathrm{P}[V & \leq v]=\mathrm{P}[H(X) \leq v]=v \Longrightarrow \mathrm{P}\left[X \geq H^{-1}(v)\right]=v \Longrightarrow 1-\mathrm{P}\left[X<H^{-1}(v)\right]=v \\
& \Longrightarrow\left\{H^{-1}(v)\right\}^{4}=1-v \text { and hence } H(v)=1-v^{4}
\end{aligned}
$$

2. We have $f_{R}(r)=6 r(1-r)$, for $0<r<1$, and hence

$$
F_{R}(r)=r^{2}(3-2 r) \quad 0<r<1
$$

Circumference: $Y=2 \pi R$, so $\mathbb{Y}=(0,2 \pi)$, and from first principles, for $y \in \mathbb{Y}$,

$$
\begin{aligned}
F_{Y}(y) & =\mathrm{P}[Y \leq y]=\mathrm{P}[2 \pi R \leq y]=\mathrm{P}[R \leq y / 2 \pi]=F_{R}(y / 2 \pi)=\frac{3 y^{2}}{4 \pi^{2}}-\frac{2 y^{3}}{8 \pi^{3}} \\
\Longrightarrow f_{Y}(y) & =\frac{6 y}{8 \pi^{3}}(2 \pi-y) \quad 0<y<2 \pi
\end{aligned}
$$

Area: $Z=\pi R^{2}$, so $\mathbb{Z}=(0, \pi)$, and from first principles, for $z \in \mathbb{Z}$, recalling that f_{R} is only positive when $0<z<\pi$,

$$
\begin{aligned}
F_{Z}(z) & =\mathrm{P}[Z \leq z]=\mathrm{P}\left[\pi R^{2} \leq z\right]=\mathrm{P}[R \leq \sqrt{z / \pi}]=F_{R}(\sqrt{z / \pi})=\frac{3 z}{\pi}-2\left\{\frac{z}{\pi}\right\}^{3 / 2} \\
\Longrightarrow f_{Z}(z) & =3 \pi^{-3 / 2}(\sqrt{\pi}-\sqrt{z}) \quad 0<z<\pi .
\end{aligned}
$$

3. By integration

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t=\int_{0}^{x} \frac{\alpha}{\beta}\left(\frac{\beta}{\beta+t}\right)^{\alpha+1} d t=\left[-\left(\frac{\beta}{\beta+t}\right)^{\alpha}\right]_{0}^{x}=1-\left(1+\frac{x}{\beta}\right)^{-\alpha} \quad x>0
$$

If $Y=\log X$, then $\mathbb{Y}=\mathbb{R}$, and

$$
\begin{aligned}
F_{Y}(y) & =\mathrm{P}[Y \leq y]=\mathrm{P}[\log X \leq y]=\mathrm{P}\left[X \leq e^{y}\right]=F_{X}\left(e^{y}\right)=1-\left(1+\frac{e^{y}}{\beta}\right)^{-\alpha} \\
\Longrightarrow f_{Y}(y) & =\frac{\alpha}{\beta} e^{y}\left(\frac{\beta}{\beta+e^{y}}\right)^{\alpha+1} \quad y \in \mathbb{R}
\end{aligned}
$$

If $Z=\xi+\theta Y$, then $Y=(Z-\xi) / \theta$, so the density of Z can be found easily using transformation techniques

$$
f_{Z}(z)=\frac{\alpha}{\beta} e^{(z-\xi) / \theta}\left(\frac{\beta}{\beta+e^{(z-\xi) / \theta}}\right)^{\alpha+1} \frac{1}{\theta} \quad z \in \mathbb{R}
$$

4. Easy to see that $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$, with $\mathbb{X}^{(2)}=\mathbb{X} \times \mathbb{Y}$, so X and Y are independent, where

$$
f_{X}(x)=\sqrt{c} \frac{2^{x}}{x!} \quad f_{Y}(y)=\sqrt{c} \frac{2^{y}}{y!} \quad \text { and } \quad \sum_{x=0}^{\infty} f_{X}(x)=1 \Longrightarrow \sqrt{c}=e^{-2}
$$

(marginal mass functions must have identical forms as joint mass function is symmetric in x and y) as the summation is identical to the power series expansion of e^{z} at $z=2$ if $\sqrt{c}=e^{-2}$.
5. $F_{X, Y}$ is continuous and non decreasing in x and y, and

$$
\lim _{x \longrightarrow-\infty} F_{X, Y}(x, y)=\lim _{y \longrightarrow-\infty} F_{X, Y}(x, y)=0 \quad \lim _{x, y \longrightarrow \infty} F_{X, Y}(x, y)=1
$$

so $F_{X, Y}$ is a valid cdf, and

$$
f_{X, Y}(x, y)=\frac{\partial^{2}}{\partial t_{1} \partial t_{2}}\left\{F_{X, Y}\left(t_{1}, t_{2}\right)\right\}_{t_{1}=x, t_{2}=y}=\frac{e^{-x}}{\pi\left(1+y^{2}\right)}=f_{X}(x) f_{Y}(y)
$$

so as $\mathbb{X}^{(2)}=\mathbb{R}^{+} \times \mathbb{R}, X$ and Y are independent.
6. (i) If $\mathbb{X}^{(2)}=(0,1) \times(0,1)$ is the (joint) range of vector random variable (X, Y). We have

$$
f_{X, Y}(x, y)=c x(1-y) \quad 0<x<1,0<y<1
$$

so that

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \quad \text { and } \quad \mathbb{X}^{(2)}=\mathbb{X} \times \mathbb{Y}
$$

where \mathbb{X} and \mathbb{Y} are the ranges of X and Y respectively, and

$$
\begin{equation*}
f_{X}(x)=c_{1} x \quad \text { and } \quad f_{Y}(y)=c_{2}(1-y) \tag{1}
\end{equation*}
$$

for some constants satisfying $c_{1} c_{2}=c$. Hence, the two conditions for independence are satisfied in (1), and X and Y are independent.
(ii) We must have

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1 \quad \therefore \quad c^{-1}=\int_{0}^{1} \int_{0}^{1} x(1-y) d x d y=1
$$

and as

$$
\int_{0}^{1} \int_{0}^{1} x(1-y) d x d y=\left\{\int_{0}^{1} x d x\right\}\left\{\int_{0}^{1}(1-y) d y\right\}=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}
$$

we have $c=4$.
(iii) We have $A=\{(x, y): 0<x<y<1\}$, and hence, recalling that the joint density is only non-zero when $x<y$, we first fix a y and integrate $d x$ on the range $(0, y)$, and then integrate $d y$ on the range $(0,1)$, that is

$$
\begin{aligned}
P[X<Y] & =\int_{A} \int f_{X, Y}(x, y) d x d y=\int_{0}^{1}\left\{\int_{0}^{y} 4 x(1-y) d x\right\} d y=\int_{0}^{1}\left\{\int_{0}^{y} x d x\right\} 4(1-y) d y \\
& =\int_{0}^{1} 2 y^{2}(1-y) d y=\left[\frac{2}{3} y^{3}-\frac{1}{2} y^{4}\right]_{0}^{1}=\frac{1}{6}
\end{aligned}
$$

7. The joint pdf of X and Y is given by

$$
f_{X . Y}(x, y)=24 x y \quad x>0, y>0, x+y<1
$$

and zero otherwise, the marginal pdf f_{X} is given by

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y=\int_{0}^{1-x} 24 x y d y=24 x\left[\frac{y^{2}}{2}\right]_{0}^{1-x}=12 x(1-x)^{2} \quad 0<x<1
$$

as the integrand is only non-zero when $0<x+y<1 \Longrightarrow 0<y<1-x$ for fixed x
8. First sketch the support of the density; this will make it clear that the boundaries of the support are different for $0<y \leq 1$ and $y>1$. The marginal distributions are given by

$$
\begin{aligned}
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y=\int_{1 / x}^{x} \frac{1}{2 x^{2} y} d y=\frac{1}{2 x^{2}}(\log x-\log (1 / x))=\frac{\log x}{x^{2}} \quad 1 \leq x \\
& f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x= \begin{cases}\int_{1 / y}^{\infty} \frac{1}{2 x^{2} y} d x=\frac{1}{2} & 0 \leq y \leq 1 \\
\int_{y}^{\infty} \frac{1}{2 x^{2} y} d x=\frac{1}{2 y^{2}} & 1 \leq y\end{cases}
\end{aligned}
$$

Conditionals:

$$
\begin{aligned}
& f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\left\{\begin{array}{cl}
\frac{1}{x^{2} y} & 1 / y \leq x \text { if } 0 \leq y \leq 1 \\
\frac{y}{x^{2}} & y \leq x \text { if } 1 \leq y
\end{array}\right. \\
& f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{1}{2 y \log x} \quad 1 / x \leq y \leq x \text { if } x \geq 1
\end{aligned}
$$

Marginal expectation of Y;

$$
E_{f_{Y}}[Y]=\int_{-\infty}^{\infty} y f_{Y}(y) d y=\int_{0}^{1} \frac{y}{2} d y+\int_{1}^{\infty} \frac{1}{2 y} d y=\infty
$$

as the second integral is divergent.

