M2S1 - EXERCISES 2: SOLUTIONS

1. Need $\sum_{x=1}^{\infty} f_{X}(x)=1$. Hence
(a) $c^{-1}=\sum_{x=1}^{\infty} \frac{1}{2^{x}}=1$
(b) $c^{-1}=\sum_{x=1}^{\infty} \frac{1}{x 2^{x}}=\log 2$
(c) $\quad c^{-1}=\sum_{x=1}^{\infty} \frac{1}{x^{2}}=\frac{\pi^{2}}{6}$
(d) $\quad c^{-1}=\sum_{x=1}^{\infty} \frac{2^{x}}{x!}=e^{2}-1$
(a) is given by the sum of a geometric progression; (b) uses the fact that

$$
\frac{1}{1-t}=1+t+t^{2}+\ldots=\sum_{x=0}^{\infty} t^{x} \Longrightarrow-\log (1-t)=t+\frac{t^{2}}{2}+\frac{t^{3}}{3}+\ldots=\sum_{x=1}^{\infty} \frac{t^{x}}{x}
$$

by integrating both sides with respect to t. Hence for $t=1 / 2$, we have

$$
\log 2=-\log (1-1 / 2)=\sum_{x=1}^{\infty} \frac{1}{x 2^{x}}
$$

(c) is a "well-known" mathematical result (you would not be expected to remember it for the examination); (d) uses the power series expansion of e^{t}, evaluated at $t=2$, that is

$$
e^{t}=\sum_{x=0}^{\infty} \frac{t^{x}}{x!} \Longrightarrow e^{2}=\sum_{x=0}^{\infty} \frac{2^{x}}{x!}=1+\sum_{x=1}^{\infty} \frac{2^{x}}{x!}
$$

Clearly $\mathrm{P}[X>1]=1-\mathrm{P}[X=1]$, so
(a) $\mathrm{P}[X>1]=\frac{1}{2}$
(b) $\mathrm{P}[X>1]=1-\frac{1}{2 \log 2}$
(c) $\mathrm{P}[X>1]=1-\frac{6}{\pi^{2}}$
(d) $\mathrm{P}[X>1]=\frac{e^{2}-3}{e^{2}-1}$
$\mathrm{P}[X$ is even $]=\sum_{x=1}^{\infty} \mathrm{P}[X=2 x]$, so
(a) $\mathrm{P}[X$ is even $]=\frac{1}{3}$
(b) $\mathrm{P}[X$ is even $]=1-\frac{\log 3}{\log 4}$
(c) $\mathrm{P}[X$ is even $]=\frac{1}{4}$
(d) $\mathrm{P}[X$ is even $]=\frac{1-e^{-2}}{2}$
(a) is still the sum of a geometric progression
(b) follows from the logarithmic series expansion;

$$
P[X \text { is even }]=\sum_{x=1}^{\infty} P[X=2 x]=c \sum_{x=1}^{\infty} \frac{1}{(2 x) 2^{2 x}}=\frac{c}{2} \sum_{x=1}^{\infty} \frac{1}{x 4^{x}}=\frac{c}{2} \times(-\log (1-1 / 4))
$$

(c) follows from the initial result taking out a factor of $1 / 4$
(d) uses the sum of the two power series of e^{t} and e^{-t}, to knock out the odd terms, evaluated at $t=2$.
2. Let Z and X be the numbers of Heads obtained on the first and second tosses respectively. Then the ranges of Z and X are both $\{0,1,2, \ldots, n\}$. Now

$$
f_{X}(x)=\mathrm{P}[X=x]=\sum_{z=1}^{n} \mathrm{P}[X=x \mid Z=z] \mathrm{P}[Z=z]=\sum_{z=x}^{n}\binom{z}{x}\left(\frac{1}{2}\right)^{z}\binom{n}{z}\left(\frac{1}{2}\right)^{n}
$$

using the Theorem of Total probability. Hence

$$
f_{X}(x)=\left(\frac{1}{2}\right)^{n} \sum_{z=x}^{n} \frac{z!}{x!(z-x)!} \frac{n!}{z!(n-z)!}\left(\frac{1}{2}\right)^{z}=\left(\frac{1}{2}\right)^{n}\binom{n}{x} \sum_{z=x}^{n}\binom{n-x}{n-z}\left(\frac{1}{2}\right)^{z}
$$

But

$$
\sum_{z=x}^{n}\binom{n-x}{n-z}\left(\frac{1}{2}\right)^{z}=\sum_{t=0}^{m}\binom{m}{m-t}\left(\frac{1}{2}\right)^{t+x}=\left(\frac{1}{2}\right)^{x}\left(1+\frac{1}{2}\right)^{m}
$$

where $t=z-x$, and $m=n-x$, using the Binomial Expansion. Hence

$$
f_{X}(x)=\binom{n}{x}\left(\frac{1}{2}\right)^{n}\left(\frac{1}{2}\right)^{x}\left(1+\frac{1}{2}\right)^{n-x}=\binom{n}{x} \frac{3^{n-x}}{2^{2 n}} \quad x=0,1,2, \ldots, n
$$

Alternately, as all tosses are independent, consider tossing all n coins twice, and counting the number that show heads twice; this is identical to evaluating X. Then as each coin shows heads twice with probability $\left(\frac{1}{2}\right)^{2}$,

$$
f_{X}(x)=\binom{n}{x}\left\{\left(\frac{1}{2}\right)^{2}\right\}^{x}\left\{1-\left(\frac{1}{2}\right)^{2}\right\}^{n-x}=\binom{n}{x} \frac{3^{n-x}}{2^{2 n}}
$$

as before.
3. Each of the $n(n+1) / 2$ points has equal probability $p=2 /(n(n+1))$ of being selected. In column x of the triangular array of points, there are x points in total; in row y, there are $(n+1-y)$ points (for $x, y=1,2, \ldots, n)$ and therefore

$$
\begin{aligned}
& f_{X}(x)=\mathrm{P}[X=x]=x p=\frac{2 x}{n(n+1)} \quad x=1,2, \ldots, n \\
& f_{Y}(y)=\mathrm{P}[Y=y]=(n+1-y) p=\frac{2(n+1-y)}{n(n+1)} \quad y=1,2, \ldots, n
\end{aligned}
$$

4. Can calculate F_{X} by integration

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t=\int_{0}^{x} c t^{2}(1-t) d t=c\left[\frac{x^{3}}{3}-\frac{x^{4}}{4}\right] \quad 0<x<1
$$

and $F_{X}(1)=1$ gives $c=12$. Finally,

$$
\mathrm{P}[X>1 / 2]=1-\mathrm{P}[X \leq 1 / 2]=1-F_{X}(1 / 2)=1-12[1 / 24-1 / 64]=11 / 16
$$

5. Valid pdf if (i) it is a non-negative function (that is, if $k>0$), and (ii) integrates to 1 over the range $x>1$, that is

$$
\int_{1}^{\infty} f_{X}(x) d x=\int_{1}^{\infty} \frac{k}{x^{k+1}} d x=\left[-\frac{1}{x^{k}}\right]_{1}^{\infty}=1 \text { if } k>0
$$

so f_{X} is a pdf if $k>0$, and $F_{X}(x)=1-\frac{1}{x^{k}}$ for $x>1$.
6. Sketch of f_{X};

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t=\left\{\begin{array}{lll}
\int_{0}^{x} t d t & =\frac{x^{2}}{2} & 0<x<1 \\
\int_{0}^{1} t d t+\int_{1}^{x}(2-t) d t & =2 x-\frac{x^{2}}{2}-1 & 1 \leq x<2
\end{array}\right.
$$

Note that F_{X} is continuous, and $F_{X}(0)=0, F_{X}(2)=1$.
7. Note small error in question: should be

$$
F_{X}(x)=c\left(\alpha x^{\beta}-\beta x^{\alpha}\right) \quad 0 \leq x \leq 1
$$

and $F_{X}(x)=0$ if $x<0$, but $\mathbf{F}_{\mathbf{X}}(\mathbf{x})=\mathbf{1}$ if $\mathbf{x}>\mathbf{1}$.

$$
F_{X}(1)=1 \Longrightarrow c=\frac{1}{\alpha-\beta}, \text { and }
$$

$$
f_{X}(x)=\frac{d}{d t}\left\{F_{X}(t)\right\}_{t=x}=\frac{\alpha \beta}{\alpha-\beta}\left(x^{\beta-1}-x^{\alpha-1}\right) \quad 0 \leq x \leq 1
$$

and zero otherwise, and hence

$$
\begin{aligned}
\mathrm{E}_{f_{X}}\left[X^{r}\right] & =\int_{-\infty}^{\infty} x^{r} f_{X}(x) d x=\int_{0}^{1} \frac{\alpha \beta}{\alpha-\beta} x^{r}\left(x^{\beta-1}-x^{\alpha-1}\right) d x \\
& =\frac{\alpha \beta}{\alpha-\beta}\left[\frac{x^{\beta+r}}{\beta+r}-\frac{x^{\alpha+r}}{\alpha+r}\right]_{0}^{1} \\
& =\frac{\alpha \beta}{(\alpha+r)(\beta+r)}
\end{aligned}
$$

8. By differentiation,

$$
f_{X}(x)=\frac{d}{d t}\left\{F_{X}(t)\right\}_{t=x}=\frac{2 \beta\left(\beta^{2}-x^{2}\right)}{\left(\beta^{2}+x^{2}\right)^{2}} \quad 0 \leq x \leq \beta
$$

and zero otherwise, and hence

$$
\begin{aligned}
\mathrm{E}_{f_{X}}[X] & =\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{\beta} x \frac{2 \beta\left(\beta^{2}-x^{2}\right)}{\left(\beta^{2}+x^{2}\right)^{2}} d x \\
& =\int_{0}^{\pi / 4} 2 \beta^{2} \tan \theta \frac{\beta^{2}\left(1-\tan ^{2} \theta\right)}{\beta^{4}\left(1+\tan ^{2} \theta\right)^{2}} \beta \sec ^{2} \theta d \theta \quad(x=\beta \tan \theta) \\
& =2 \beta \int_{0}^{\pi / 4} \tan \theta \frac{\left(1-\tan ^{2} \theta\right)}{\left(1+\tan ^{2} \theta\right)} d \theta \\
& =2 \beta \int_{0}^{\pi / 4} \tan \theta \cos 2 \theta d \theta \\
& =2 \beta\left[\frac{1}{2} \tan \theta \sin 2 \theta\right]_{0}^{\pi / 4}-\beta \int_{0}^{\pi / 4} \sec ^{2} \theta \sin 2 \theta d \theta \quad(\text { by parts }) \\
& =2 \beta\left[\frac{1}{2}-\int_{0}^{\pi / 4} \tan \theta d \theta\right] \\
& =2 \beta\left[\frac{1}{2}-[-\log (\cos \theta)]_{0}^{\pi / 4}\right] \\
& =2 \beta\left[\frac{1}{2}+\log (\cos \pi / 4)\right]=\beta(1-\log 2)
\end{aligned}
$$

as $\cos \pi / 4=1 / \sqrt{2}$.

