M2S1 - EXERCISES 1: SOLUTIONS

1. This equation can only hold if all terms are well-defined. Thus we must have $P(B)>0$ and $P\left(B^{\prime}\right)>0$ in order for the conditional probabilities to exist. Hence we know that $\emptyset \subset B \subset \Omega$. Furthermore, we have by the Theorem of Total Probability that

$$
P(A)=P(A \cap B)+P\left(A \cap B^{\prime}\right)=P(A \mid B) P(B)+P\left(A \mid B^{\prime}\right) P\left(B^{\prime}\right)
$$

Hence

$$
P(A)-\left\{P(A \mid B)+P\left(A \mid B^{\prime}\right)\right\}=P(A \mid B)\{P(B)-1\}+P\left(A \mid B^{\prime}\right)\left\{P\left(B^{\prime}\right)-1\right\}
$$

and as we have established $0<P(B), P\left(B^{\prime}\right)<1$, the RHS is no greater than zero. Hence the equality only holds if

$$
P(A)=P(A \mid B)=P\left(A \mid B^{\prime}\right)=0
$$

that is, if $P(A)=0$.
2. Let H_{n} be the event that n tosses result in an even number of heads. Conditioning on the result after $n-1$ tosses, and using the Theorem of Total Probability

$$
P\left(H_{n}\right)=P\left(H_{n} \mid H_{n-1}\right) P\left(H_{n-1}\right)+P\left(H_{n} \mid H_{n-1}^{\prime}\right) P\left(H_{n-1}^{\prime}\right)
$$

Therefore,

$$
p_{n}=(1-p) p_{n-1}+p\left(1-p_{n-1}\right)=p+(1-2 p) p_{n-1}
$$

Now, to find a solution to this difference equation, propose $p_{n}=A+B \lambda^{n}$ for all $n \geq 0$. Then

$$
\left.\begin{array}{ll}
n=0 & p_{0}=A+B=1 \\
n \geq 1 & p_{n}=A+B \lambda^{n}=p+(1-2 p)\left(A+B \lambda^{n-1}\right)
\end{array}\right\} \Longrightarrow \lambda=(1-2 p), A=B=\frac{1}{2}, p_{n}=\frac{1}{2}+\frac{1}{2}(1-2 p)^{n}
$$

If $p<1 / 2,(1-2 p)>0$, so $p_{n}>1 / 2$ for all n.
As $n \longrightarrow \infty$,

$$
p_{n} \longrightarrow \begin{cases}1 / 2 & 0<p<1 \\ 1 & p=0\end{cases}
$$

and if $p=1$ no limit exists.
3. Let F_{n} be the event that the weather is fine on day n. Then conditioning on the weather on day $n-1$, and using the Theorem of Total Probability

$$
P\left(F_{n}\right)=P\left(F_{n} \mid F_{n-1}\right) P\left(F_{n-1}\right)+P\left(F_{n} \mid F_{n-1}^{\prime}\right) P\left(F_{n-1}^{\prime}\right) \quad \theta_{n}=p \theta_{n-1}+(1-p)\left(1-\theta_{n-1}\right)
$$

and hence

$$
\left(\theta_{n}-\frac{1}{2}\right)=(2 p-1)\left(\theta_{n-1}-\frac{1}{2}\right)=(2 p-1)^{n-1}\left(\theta_{1}-\frac{1}{2}\right) \quad \theta_{n}=\frac{1}{2}+(2 p-1)^{n-1}\left(\theta-\frac{1}{2}\right)
$$

so $\theta_{n} \longrightarrow \frac{1}{2}$ as $n \longrightarrow \infty$.
4. Let E and F be the events that the sequence of tosses results in n Heads, and that the coin is fair respectively. Then

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{\prime}\right) P\left(F^{\prime}\right)}
$$

(i) $P(E \mid F)=\left(\frac{1}{2}\right)^{n}, P\left(E \mid F^{\prime}\right)=1, P(F)=P\left(F^{\prime}\right)=\frac{1}{2}$, and hence $P(F \mid E)=\frac{1}{1+2^{n}}$.
(ii) $P(E \mid F)=\binom{n}{k}\left(\frac{1}{2}\right)^{n}, P\left(E \mid F^{\prime}\right)=\binom{n}{k} p^{k}(1-p)^{n-k}, P(F)=P\left(F^{\prime}\right)=\frac{1}{2}$, and hence

$$
P(F \mid E)=\frac{1}{1+2^{n} p^{k}(1-p)^{n-k}}
$$

5. Let E, F and G be the events that the flower produces ripe fruit, that the flower is pollinated, and that the fruit ripens respectively. Then $P(E)=P(F \cap G)=P(F) P(G)=\frac{2}{3} \times \frac{3}{4}=\frac{1}{2}$.

Now let A_{n} be the event that the tree produces n flowers, and B_{r} be the event that the tree produces r ripe fruit (for $n \geq r$). Then

$$
P\left(A_{n} \mid B_{r}\right)=\frac{P\left(B_{r} \mid A_{n}\right) P\left(A_{n}\right)}{\sum_{n=r}^{\infty} P\left(B_{r} \mid A_{n}\right) P\left(A_{n}\right)}
$$

Now

$$
P\left(B_{r} \mid A_{n}\right)=\binom{n}{r}\left(\frac{1}{2}\right)^{n} \quad P\left(A_{n}\right)=(1-p) p^{n}
$$

so

$$
\begin{aligned}
P\left(A_{n} \mid B_{r}\right) & =\frac{\binom{n}{r}\left(\frac{1}{2}\right)^{n}(1-p) p^{n}}{\sum_{n=r}^{\infty}\binom{n}{r}\left(\frac{1}{2}\right)^{n}(1-p) p^{n}} \\
& =\binom{n}{r}\left(\frac{p}{2}\right)^{n} \frac{1}{\sum_{x=0}^{\infty}\binom{x+r}{r}\left(\frac{p}{2}\right)^{x+r}}=\binom{n}{r}\left(\frac{p}{2}\right)^{n-r} \frac{1}{\left(1-\frac{p}{2}\right)^{-(r+1)}}
\end{aligned}
$$

using the binomial expansion for negative exponent. Hence

$$
P\left(A_{n} \mid B_{r}\right)=\binom{n}{r} \frac{p^{n-r}(2-p)^{r+1}}{2^{n+1}} \quad r \leq n
$$

6. Let T_{k} be the event that there are k successive positive tests, let S be the event that drugs are present. Then

$$
P\left(S \mid T_{k}\right)=\frac{P\left(T_{k} \mid S\right) P(S)}{P\left(T_{k} \mid S\right) P(S)+P\left(T_{k} \mid S^{\prime}\right) P\left(S^{\prime}\right)}=\frac{0.99^{k} \times 0.0002}{0.99^{k} \times 0.0002+(1-0.98)^{k} \times(1-0.0002)}
$$

as, by conditional independence

$$
P\left(T_{k} \mid S\right)=\left\{P\left(T_{1} \mid S\right)\right\}^{k} \quad P\left(T_{k} \mid S^{\prime}\right)=\left\{P\left(T_{1} \mid S^{\prime}\right)\right\}^{k}
$$

If $k=1, P\left(S \mid T_{1}\right)=0.0098$.
If $k=2, P\left(S \mid T_{2}\right)=0.3289$.

