M2S1 - ASSESSED COURSEWORK 1 SOLUTIONS

(a) We have

$$
f_{N}(n)=k_{1} \frac{(-\log (1-\phi))^{n}}{n!} \quad n=0,1,2, \ldots
$$

and zero otherwise, for some parameter ϕ, and constant k_{1}.
(i) This sum is convergent and non-negative if and only if $0<\phi<1$; this follows by inspection of f_{N}.
(ii) Writing $\lambda=-\log (1-\phi)$, and noting that

$$
\sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!}=\exp \{\lambda\}
$$

by the exponential series sum formula, so

$$
\sum_{n=0}^{\infty} f_{N}(n)=1 \quad \Longrightarrow \quad k_{1}=\exp \{-\lambda\}=\exp \{-(-\log (1-\phi))\}=1-\phi
$$

[2 MARKS]
(iii)

$$
P[N>0]=1-P[N=0]=1-(1-\phi) \frac{(-\log (1-\phi))^{0}}{0!}=1-(1-\phi)=\phi .
$$

[2 MARKS]
(b) We now have a continuous variable, with pdf f_{X} given by

$$
f_{X}(x)=k_{2} x \exp \{-\beta x\} \quad x>0
$$

and zero otherwise, for parameter $\beta>0$, and constant k_{2}.
(i)

$$
\int_{-\infty}^{\infty} f_{X}(x) d x=1 \quad \Longrightarrow \quad k_{2}=\left[\int_{0}^{\infty} x \exp \{-\beta x\} d x\right]^{-1}
$$

By parts

$$
\begin{aligned}
\int_{0}^{\infty} x \exp \{-\beta x\} d x & =\left[-\frac{x}{\beta} \exp \{-\beta x\}\right]_{0}^{\infty}+\frac{1}{\beta} \int_{0}^{\infty} \exp \{-\beta x\} d x \\
& =0+\frac{1}{\beta}\left[-\frac{1}{\beta} \exp \{-\beta x\}\right]_{0}^{\infty} \\
& =\frac{1}{\beta^{2}}
\end{aligned}
$$

so $k_{2}=\beta^{2}$.
(ii) Using similar techniques, for $x>0$,

$$
\begin{aligned}
F_{X}(x) & =\int_{-\infty}^{x} f_{X}(t) d t=\int_{0}^{x} \beta^{2} x \exp \{-\beta x\} d x=[-\beta t \exp \{-\beta t\}]_{0}^{x}+\beta \int_{0}^{x} \exp \{-\beta t\} d t \\
& =-\beta x \exp \{-\beta x\}+\beta\left[-\frac{1}{\beta} \exp \{-\beta x\}\right]_{0}^{x} \\
& =-\beta x \exp \{-\beta x\}+1-\exp \{-\beta x\}=1-(1+\beta x) \exp \{-\beta x\}
\end{aligned}
$$

[2 MARKS]
(iii) $P[X>x]=1-P[X \leq x]=1-F_{X}(x)=(1+\beta x) \exp \{-\beta x\}$.
[2 MARKS]
(c) In this problem, T is a positive random variable, with pdf f_{T} say. Using the partition given and the Theorem of Total Probability, taking probabilities on both sides, we have the cdf of T defined by

$$
F_{T}(t)=P[T \leq t]=\sum_{n=0}^{\infty} P[T \leq t \mid N=n] P[N=n]
$$

and on differentiation we get the pdf

$$
f_{T}(t)=\sum_{n=0}^{\infty} f_{T}(t \mid N=n) f_{N}(n)
$$

where $f_{T}(t \mid N=n)$ is the pdf of T if we know that $N=n^{1}$. Thus, for the mgf of T, we have (using s as the argument instead of t to avoid confusion)

$$
\begin{aligned}
M_{T}(s)=E_{f_{T}}\left[e^{s T}\right]=\int_{0}^{\infty} e^{s T} f_{T}(t) d t & =\int_{0}^{\infty} e^{s T}\left\{\sum_{n=0}^{\infty} f_{T}(t \mid N=n) f_{N}(n)\right\} d t \\
& =\sum_{n=0}^{\infty}\left\{\int_{t=0}^{\infty} e^{s T} f_{T}(t \mid N=n) d t\right\} f_{N}(n) \\
& =\sum_{n=0}^{\infty} E_{f_{T}}\left[e^{s T} \mid N=n\right] f_{N}(n)=\sum_{n=0}^{\infty} M_{T}(s \mid N=n) f_{N}(n),
\end{aligned}
$$

say, where $M_{T}(s \mid N=n)=E_{f_{T}}\left[e^{s T} \mid N=n\right]$ is the mgf for T if we know that $N=n$.
[3 MARKS]
Now, using the key mgf result, and the hint given, we know that if $N=n$, then for argument s in a suitable neighbourhood.

$$
T=\sum_{i=1}^{n} X_{i} \quad \Longrightarrow \quad M_{T}(s \mid N=n)=\left\{M_{X}(s)\right\}^{n}
$$

where M_{X} is the mgf of X_{1}, \ldots, X_{n}, as these variables are independent and identically distributed.
[1 MARK]

[^0]Thus, from above, again using $\lambda=-\log (1-\phi)$, we have the mgf of T as

$$
\begin{aligned}
M_{T}(s)=\sum_{n=0}^{\infty} M_{T}(s \mid N=n) f_{N}(n)=\sum_{n=0}^{\infty}\left\{M_{X}(s)\right\}^{n} \exp \{-\lambda\} \frac{\lambda^{n}}{n!} & =\exp \{-\lambda\} \sum_{n=0}^{\infty} \frac{\left(\lambda M_{X}(s)\right)^{n}}{n!} \\
& =\exp \{-\lambda\} \exp \left\{\left(\lambda M_{X}(s)\right)\right\} \\
& =\exp \left\{\lambda\left(M_{X}(s)-1\right)\right\}
\end{aligned}
$$

[2 MARKS]
Now, by direct calculation

$$
M_{X}(s)=\int_{0}^{\infty} e^{s x} f_{X}(x) d x=\int_{0}^{\infty} e^{s x} \beta^{2} x \exp \{-\beta x\} d x=\beta^{2} \int_{0}^{\infty} x \exp \{-x(\beta-s)\} d x=\left(\frac{\beta}{\beta-s}\right)^{2}
$$

for $\beta>s$, as the integrand is proportional to the $\operatorname{pdf} f_{X}$. Thus, differentiating twice yields

$$
\begin{array}{lll}
M_{X}^{(1)}(s)=2 \beta^{2}(\beta-s)^{-3} & \therefore & M_{X}^{(1)}(0)=\frac{2}{\beta} \\
M_{X}^{(2)}(s)=6 \beta^{2}(\beta-s)^{-4} & \therefore & M_{X}^{(2)}(0)=\frac{6}{\beta^{2}}
\end{array}
$$

and finally, for T, from above

$$
M_{T}^{(1)}(s)=\lambda M_{X}^{(1)}(s) \exp \left\{\lambda\left(M_{X}(s)-1\right)\right\} \therefore M_{T}^{(1)}(0)=\lambda M_{X}^{(1)}(0) \exp \left\{\lambda\left(M_{X}(0)-1\right)\right\}=\lambda \frac{2}{\beta}
$$

as $M_{X}(0)=1$. Similarly

$$
M_{T}^{(2)}(s)=\lambda^{2}\left(M_{X}^{(1)}(s)\right)^{2} \exp \left\{\lambda\left(M_{X}(s)-1\right)\right\}+\lambda M_{X}^{(2)}(s) \exp \left\{\lambda\left(M_{X}(s)-1\right)\right\}
$$

so that

$$
M_{T}^{(2)}(0)=\lambda^{2}\left(M_{X}^{(1)}(0)\right)^{2} \exp \left\{\lambda\left(M_{X}(0)-1\right)\right\}+\lambda M_{X}^{(2)}(0) \exp \left\{\lambda\left(M_{X}(0)-1\right)\right\}=\lambda^{2} \frac{4}{\beta^{2}}+\lambda \frac{6}{\beta^{2}}
$$

and hence

$$
E_{f_{T}}[T]=\frac{2 \lambda}{\beta} \quad E_{f_{T}}\left[T^{2}\right]=\frac{4 \lambda^{2}}{\beta^{2}}+\frac{6 \lambda}{\beta^{2}}
$$

and hence

$$
\operatorname{Var}_{f_{T}}[T]=E_{f_{T}}\left[T^{2}\right]-\left\{E_{f_{T}}[T]\right\}^{2}=\frac{4 \lambda^{2}}{\beta^{2}}+\frac{6 \lambda}{\beta^{2}}-\frac{4 \lambda^{2}}{\beta^{2}}=\frac{6 \lambda}{\beta^{2}} .
$$

[4 MARKS]

[^0]: ${ }^{1}$ In reality, of course, we do not know N, as it is a random quantity; this is why we have to use the partition.

