WORKED EXAMPLES 3

COVARIANCE CALCULATIONS

EXAMPLE Let X and Y be discrete random variables with joint mass function defined by

$$
f_{X, Y}(x, y)=\frac{1}{4} \quad(x, y) \in\{(0,0),(1,1),(1,-1),(2,0)\}
$$

and zero otherwise. The marginal mass functions, expectations and variances of X and Y are

$$
\begin{aligned}
f_{X}(x) & =\sum_{y} f_{X, Y}(x, y)= \begin{cases}\frac{1}{4} & x=0,2 \\
\frac{1}{2} & x=1\end{cases} \\
\Longrightarrow E_{f_{X}}[X] & =\sum_{x=0}^{2} x f_{X}(x)=\left(0 \times \frac{1}{4}+1 \times \frac{1}{2}+2 \times \frac{1}{4}\right)=1 \\
\Longrightarrow V_{f_{X}}\left[X^{2}\right] & =\sum_{x=0}^{2} x^{2} f_{X}(x)=\left(0 \times \frac{1}{4}+1^{2} \times \frac{1}{2}+2^{2} \times \frac{1}{4}\right)=\frac{3}{2} \\
\operatorname{Var}_{f_{X}}[X] & =E_{f_{X}}\left[X^{2}\right]-\left\{E_{f_{X}}[X]\right\}^{2}=\frac{3}{2}-\{1\}^{2}=\frac{1}{2} \\
f_{Y}(y) & =\sum_{x} f_{X, Y}(x, y)= \begin{cases}\frac{1}{4} & y=-1,1 \\
\frac{1}{2} & y=0\end{cases} \\
\Longrightarrow E_{f_{Y}}[Y] & =\sum_{y=0}^{2} y f_{Y}(y)=\left(-1 \times \frac{1}{4}+0 \times \frac{1}{2}+1 \times \frac{1}{4}\right)=0 \\
\Longrightarrow V_{f_{Y}}\left[Y^{2}\right] & =\sum_{y=0}^{2} y^{2} f_{Y}(y)=\left((-1)^{2} \times \frac{1}{4}+0^{2} \times \frac{1}{2}+1^{2} \times \frac{1}{4}\right)=\frac{1}{2} \\
\hline \operatorname{Var}_{f_{Y}}[Y] & =E_{f_{Y}}\left[Y^{2}\right]-\left\{E_{f_{Y}}[Y]\right\}^{2}=\frac{1}{2}-\{0\}^{2}=\frac{1}{2}
\end{aligned}
$$

and to compute the covariance we also need to compute $\mathrm{E}_{f_{X, Y}}[X Y]$

$$
\begin{aligned}
E_{f_{X, Y}}[X Y] & =\sum_{x} \sum_{y} x y f_{X, Y}(x, y)=\left((0 \times 0) \times \frac{1}{4}+(1 \times 1) \times \frac{1}{4}+(1 \times-1) \times \frac{1}{4}+(2 \times 0) \times \frac{1}{4}\right)=0 \\
\Longrightarrow \operatorname{Cov}_{f_{X, Y}}[X, Y] & =E_{f_{X, Y}}[X Y]-E_{f_{X}}[X] E_{f_{Y}}[Y]=0-1 \times 0=0 \quad \operatorname{Corr}_{f_{X, Y}}[X, Y]=0
\end{aligned}
$$

Hence the two variables have covariance and correlation zero. But note that X and Y are not independent as it is not true that

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

for all x and y.

EXAMPLE Let X and Y be continuous random variables with joint pdf

$$
f_{X, Y}(x, y)=3 x \quad 0 \leq y \leq x \leq 1
$$

and zero otherwise.
The marginal pdfs, expectations and variances of X and Y are

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y=\int_{0}^{x} 3 x d y=3 x^{2} \quad 0 \leq x \leq 1 \\
\Longrightarrow E_{f_{X}}[X] & =\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x \times 3 x^{2} d x=\left[\frac{3}{4} x^{4}\right]_{0}^{1}=\frac{3}{4} \\
E_{f_{X}}\left[X^{2}\right] & =\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x=\int_{0}^{1} x^{2} \times 3 x^{2} d x=\left[\frac{3}{5} x^{5}\right]_{0}^{1}=\frac{3}{5} \\
\Longrightarrow \operatorname{Var}_{f_{X}}[X] & =E_{f_{X}}\left[X^{2}\right]-\left\{E_{f_{X}}[X]\right\}^{2}=\frac{3}{5}-\left\{\frac{3}{4}\right\}^{2}=\frac{3}{80} \\
f_{Y}(y) & =\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x=\int_{y}^{1} 3 x d x=\left[\frac{3}{2} x^{2}\right]_{y}^{1}=\frac{3}{2}\left(1-y^{2}\right) \\
\Longrightarrow E_{f_{Y}}[Y] & =\int_{-\infty}^{\infty} y f_{Y}(y) d y=\int_{0}^{1} y \times \frac{3}{2}\left(1-y^{2}\right) d y=\left[\frac{3}{2}\left(\frac{y^{2}}{2}-\frac{y^{4}}{4}\right)\right]_{0}^{1}=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{4}\right)=\frac{3}{8} \\
E_{f_{Y}}\left[Y^{2}\right] & =\int_{-\infty}^{\infty} y^{2} f_{Y}(y) d y=\int_{0}^{1} y^{2} \times \frac{3}{2}\left(1-y^{2}\right) d y=\left[\frac{3}{2}\left(\frac{y^{3}}{3}-\frac{y^{5}}{5}\right)\right]_{0}^{1}=\frac{3}{2}\left(\frac{1}{3}-\frac{1}{5}\right)=\frac{1}{5} \\
\Longrightarrow \operatorname{Var}_{f_{Y}}[Y] & =E_{f_{Y}}\left[Y^{2}\right]-\left\{E_{f_{Y}}[Y]\right\}^{2}=\frac{1}{5}-\left\{\frac{3}{8}\right\}^{2}=\frac{19}{320}
\end{aligned}
$$

and to compute the covariance we also need to compute $\mathrm{E}_{f_{X, Y}}[X Y]$

$$
\begin{aligned}
E_{f_{X, Y}}[X Y] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X, Y}(x, y) d y d x=\int_{0}^{1} \int_{0}^{x} x y \times 3 x d y d x \\
& =\int_{0}^{1}\left\{\int_{0}^{x} y d y\right\} 3 x^{2} d x=\int_{0}^{1}\left[\frac{y^{2}}{2}\right]_{0}^{x} 3 x d x=\int_{0}^{1} \frac{x^{2}}{2} \times 3 x^{2} d x \\
& =\frac{3}{2}\left[\frac{x^{5}}{5}\right]_{0}^{1}=\frac{3}{10} \\
\Longrightarrow \operatorname{Cov}_{f_{X, Y}}[X, Y] & =E_{f_{X, Y}}[X Y]-E_{f_{X}}[X] E_{f_{Y}}[Y]=\frac{3}{10}-\frac{3}{4} \times \frac{3}{8}=\frac{3}{160} \\
\operatorname{Corr}_{f_{X, Y}}[X, Y] & =\frac{\operatorname{Cov}_{f_{X, Y}}[X, Y]}{\sqrt{\operatorname{Var}_{f_{X}}[X] \times \operatorname{Var}_{f_{Y}}[Y]}}=\frac{\frac{3}{160}}{\sqrt{\frac{3}{80} \times \frac{19}{320}}}=0.397
\end{aligned}
$$

