NORMAL DISTRIBUTION FACTSHEET

The details of the PROOFS of these results are not examinable in M2S1. However, you
should know the results themselves.

MULTIVARIATE NORMAL DISTRIBUTION: MARGINALS AND CONDITIONALS

Suppose that vector random variable X = (X1, Xo,...,X;)T has a multivariate normal distribution

with pdf given by
fx(z) = S o b e 1xTE_1x (1)
Xp < —=

where ¥ is the k x k variance-covariance matrix (we can consider here the case where the expected value
w is the k x 1 zero vector; results for the general case are easily available by transformation).

Consider partitioning X into two components X, and X, of dimensions d and k — d respectively, that
is,
X
X = L.
- [ Xy
We attempt to deduce
(a) the marginal distribution of X, and

(b) the conditional distribution of X, given that X =gz .

First, write
5 [ Y11 Y12 ]

Yo1 Yoo
where 211 is d x d, 222 is (k‘ — d) X (k‘ — d), 221 = E-lr2, and
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so that XV = I} (I, is the r x r identity matrix) gives
[211 E12][‘/11 ‘/12}:[& 0 ]
Yo1 Moo Vo1 Vao 0 Ip—q

and more specifically the four relations

YV +Z0pVa = Iy (2)
Y1iVie +X12Vee = 0 (3)
Yor1Vir + X2V = 0 (4)
Yor1Viog +XoaVaer = I (5)
From the multivariate normal pdf in equation (1), we can re-express the term in the exponent as
'Y e = 2 Vi, + 2] Visx, + z) Voz, + 2, Voo, (6)

In order to compute the marginal and conditional distributions, we must complete the square in z,, in
this expression. We can write

'Y e = (g, —m) " M(z, - m) +c¢ (7)



and by comparing with equation (6) we can deduce that, for quadratic terms in z

27
e Vaox, = 2l My : M = Vi (8)
o V2289 T g N9 -
for linear terms
Vg, = -zl Mm . m=-Vy'Vag, (9)
and for constant terms
T _ T ) _ T Ti,—1
z, Vg, =c+m Mm s c=x, (Vi1 = Vo1 Voy Var)z, (10)

thus yielding all the terms required for equation (7), that is
"Y' = (2, + Voy ' Varz ) WVaa(z, + Voo ' Varz ) + 2] (Vin — Vo Vay ' Var )z, (11)

which, crucially, is a sum of two terms, where the first can be interpreted as a function of z,, given
and the second is a function of z, only.

1’

Hence we have an immediate factorization of the full joint pdf using the chain rule for random variables;

Ix(@) = fx x (2,lz)fx (z,) (12)
where
fx 1x (@,lz,) oc exp {—;(20.2 + Vi 'Varz, ) Vaa (z, + szle;v,l)} (13)
giving that
XX, =2, ~ N (~Vig'Vaiz, Vip') (14)
and
P, () ocexp { o (ha = ViV Van)a, | (15)
giving that
X, ~ N (0, (Vi = Vi vp Ve ™) (16)

But, from equation (3), 312 = —211‘/12‘/251, and then from equation (2), substituting in X9,
Y11Vin — E1ViaViy ' Vo = I Y11= (Vir — ViaViap 'Var) ™ = (Vin — Vo Vip ' Vo) 7
Hence, by inspection of equation (16), we conclude that

X, ~N(0,%511), (17)

that is, we can extract the X1 block of X to define the marginal variance-covariance matrix of X, .

Using similar arguments, we can define the conditional distribution from equation (14) more precisely.

First, from equation (3), Via = —21_112121/22, and then from equation (5), substituting in Vjo
— S5 S12Vos + B2aVao = g Vo =g — 01871 T1a = Top — B0 S1a.

Finally, from equation (3), taking transposes on both sides, we have that V51311 + Vag¥e; = 0. Then
pre-multiplying by V251, and post-multiplying by Zil, we have

Vg Va1 +S91 21 =0 Vo Vor = —So1 27,

so we have, substituting into equation (14), that

X,|X, =z, ~N (221Ef1123,1, Yoo — E2121711212) : (18)
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Thus any marginal, and any conditional distribution of a multivariate normal joint distribution is also
multivariate normal, as the choices of X, and X, are arbitrary.



SAMPLING DISTRIBUTION FOR NORMAL SAMPLES

THEOREM If X1, ..., X,, is a random sample from a normal distribution, say X; ~ N(u,0?), then

(a) X is independent of {Xi - X,i=1, ,n}
(b) X and s? are independent random variables
(¢) The random variable

(n—1)s? 1 — <\ 2
=l (Xi-X)
=1

has a chi-squared distribution with n — 1 degrees of freedom.

Proof: (a) The joint pdf Xj, ..., X,, is the multivariate normal density

Froalon ) = (£) Lo S @ - )

T1yes Tp) = | — ——expq—=(z — T —
X1, Xn L1y eeydbn o ’2‘1/2 p 9 \= H < B
where ¥ = 021, and I, is the n x n identity matrix. Consider the multivariate transformation to
Yi,...,Y, where

Y, = X1 :)/1_2}/@

X
}/i Xi—Y,i:Z...,n

X, =Y, +Y, i=2,...,n

Thus, in vector terms Y = AX, or equivalently X = A~'Y, where A is the n x n matrix with (i,7)th
element

1
1-—— i1=j and i # 1,

n

1 )

[A]ij = - =1
n
1 .
- otherwise
n

that is, we have a linear transformation, and the Jacobian of the transformation does not depend on
any y. Note that

n

Z(wz‘—/ﬁy:Z(wi—f+f—u)2:Z(xi—T)Q—l—n(E—u)Q

=1 =1 =1

1 n
where T = — Zaz, Note also that the joint pdf of Xy, ..., X, is, in scalar form
n

i=1

1\ 1< )
le,..,Xn (33]_, oy xn) = <27TO'2> exp _@ ($’L - H)

=1

n/2 n
- (2730_) exp{—z; [Z (2 —)2+n($—u)2] }

i=1

Now

=2 1=2



and so
n

n n 2 n
D (=) = (o =+ 3 (e —7) = (‘Z%) 2
i=1 i=2 i=2 i=2

The Jacobian of the transformation is n, so the joint density of Y7, ..., Y}, is given by direct substitution
into (1)

1 n/2 1 n 2 n )
oy Wiy otn) = n (2M2> exp =53 || —D_wi | +D_w+nln—u
=2

=2

1 \"? 1 R n
B ”<2m2) S\ T2 <_Zyi> #2008\ e { =50 =)’}
=2 =2

Hence

Y, Wi yn) = fve, v (Y2, Un) fra (1)

and therefore Y is independent of Y5, ...,Y;,. Hence X is independent of the random variables terms
{Y,- =X, - X,i=2, ,n} . Finally, X is also independent of X; — X as
n
X1 -X=-> (X;-X)
i=2

(b) s% is a function only of {Xz- -X,i=1, ,n} As X is independent of these variables, X and s
are also independent.

(¢)The random variables that appear as sums of squares terms that joint pdf are

> (X — )’ X; - x)° _
1:1( 2 B i:l( ) n (X _F‘)Q
o2 = 2 +

or Vi = Vo + V3, say. Now, X; ~ N(u,0?), so therefore

NE

(X; — p)°

n
X; — u)? X; — u)? 11 =
7( i~ K NN(O,I):>7( ! z,u) NX%EGCL< ):>Z_1 5 :VlNXi

o? o 22
as the X;s are independent, and the sum of n independent Ga(1/2,1/2) variables has a Ga(n/2,1/2)
distribution. Similarly, as X ~ N(u,02/n), V3 ~x? By part (b), Vo and V3 are independent, and so
the mgfs of V1, Vo and V3 are related by

g

_ My, (t)
My, (t)

As Vj and V3 are Gamma random variables, My, and My, are given by

M) = <1/12/:>n/2=Mv3(t) = (1/12/:>1/2 — My, (t) = <1/12/3t>(””/2

which is also the mgf of a Gamma random variable, and hence

(n—1)s 2
Vo= o2 ~ Xn—1

My, (t) = My, (t)MVS (t) = My, (t)




