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NORMAL DISTRIBUTION FACTSHEET

The details of the PROOFS of these results are not examinable in M2S1. However, you
should know the results themselves.

MULTIVARIATE NORMAL DISTRIBUTION: MARGINALS AND CONDITIONALS

Suppose that vector random variable X˜ = (X1, X2, . . . , Xk)T has a multivariate normal distribution
with pdf given by

fX˜
(x˜) =

(
1
2π

)k/2 1

|Σ|1/2
exp

{
−1

2
x˜

TΣ−1x˜

}
(1)

where Σ is the k×k variance-covariance matrix (we can consider here the case where the expected value
µ
˜

is the k × 1 zero vector; results for the general case are easily available by transformation).

Consider partitioning X˜ into two components X˜ 1
and X˜ 2

of dimensions d and k − d respectively, that
is,

X˜ =
[

X˜ 1
X˜ 2

]
.

We attempt to deduce

(a) the marginal distribution of X˜ 1
, and

(b) the conditional distribution of X˜ 2
given that X˜ 1

= x˜1
.

First, write

Σ =
[

Σ11 Σ12

Σ21 Σ22

]

where Σ11 is d× d, Σ22 is (k − d)× (k − d), Σ21 = ΣT
12, and

Σ−1 = V =
[

V11 V12

V21 V22

]

so that ΣV = Ik (Ir is the r × r identity matrix) gives
[

Σ11 Σ12

Σ21 Σ22

] [
V11 V12

V21 V22

]
=

[
Id 0
0 Ik−d

]

and more specifically the four relations

Σ11V11 + Σ12V21 = Id (2)
Σ11V12 + Σ12V22 = 0 (3)
Σ21V11 + Σ22V21 = 0 (4)
Σ21V12 + Σ22V22 = Ik−d. (5)

From the multivariate normal pdf in equation (1), we can re-express the term in the exponent as

x˜
TΣ−1x˜ = x˜

T
1
V11x˜1

+ x˜
T
1
V12x˜2

+ x˜
T
2
V21x˜1

+ x˜
T
2
V22x˜2

. (6)

In order to compute the marginal and conditional distributions, we must complete the square in x˜2
in

this expression. We can write

x˜
TΣ−1x˜ = (x˜2

−m˜ )TM(x˜2
−m˜ ) + c˜ (7)
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and by comparing with equation (6) we can deduce that, for quadratic terms in x˜2
,

x˜
T
2
V22x˜2

= x˜
T
2
Mx˜2

∴ M = V22 (8)

for linear terms
x˜

T
2
V21x˜1

= −x˜
T
2
Mm˜ ∴ m˜ = −V −1

22 V21x˜1
(9)

and for constant terms

x˜
T
1
V11x˜1

= c˜+ m˜
TMm˜ ∴ c˜ = x˜

T
1
(V11 − V T

21V
−1
22 V21)x˜1

(10)

thus yielding all the terms required for equation (7), that is

x˜
TΣ−1x˜ = (x˜2

+ V −1
22 V21x˜1

)TV22(x˜2
+ V −1

22 V21x˜1
) + x˜

T
1
(V11 − V T

21V
−1
22 V21)x˜1

, (11)

which, crucially, is a sum of two terms, where the first can be interpreted as a function of x˜2
, given x˜1

,
and the second is a function of x˜1

only.

Hence we have an immediate factorization of the full joint pdf using the chain rule for random variables;

fX˜
(x˜) = fX˜2

|X˜1
(x˜2
|x˜1

)fX˜1
(x˜1

) (12)

where

fX˜2
|X˜1

(x˜2
|x˜1

) ∝ exp
{
−1

2
(x˜2

+ V −1
22 V21x˜1

)TV22(x˜2
+ V −1

22 V21x˜1
)
}

(13)

giving that
X˜ 2
|X˜ 1

= x˜1
∼ N

(
−V −1

22 V21x˜1
, V −1

22

)
(14)

and

fX˜1
(x˜1

) ∝ exp
{
−1

2
x˜

T
1
(V11 − V T

21V
−1
22 V21)x˜1

}
(15)

giving that
X˜ 1

∼ N
(
0, (V11 − V T

21V
−1
22 V21)−1

)
. (16)

But, from equation (3), Σ12 = −Σ11V12V
−1
22 , and then from equation (2), substituting in Σ12,

Σ11V11 − Σ11V12V
−1
22 V21 = Id ∴ Σ11 = (V11 − V12V

−1
22 V21)−1 = (V11 − V T

21V
−1
22 V21)−1.

Hence, by inspection of equation (16), we conclude that

X˜ 1
∼ N (0, Σ11) , (17)

that is, we can extract the Σ11 block of Σ to define the marginal variance-covariance matrix of X˜ 1
.

Using similar arguments, we can define the conditional distribution from equation (14) more precisely.
First, from equation (3), V12 = −Σ−1

11 Σ12V22, and then from equation (5), substituting in V12

−Σ21Σ−1
11 Σ12V22 + Σ22V22 = Ik−d ∴ V −1

22 = Σ22 − Σ21Σ−1
11 Σ12 = Σ22 − ΣT

12Σ
−1
11 Σ12.

Finally, from equation (3), taking transposes on both sides, we have that V21Σ11 + V22Σ21 = 0. Then
pre-multiplying by V −1

22 , and post-multiplying by Σ−1
11 , we have

V −1
22 V21 + Σ21Σ−1

11 = 0 ∴ V −1
22 V21 = −Σ21Σ−1

11 ,

so we have, substituting into equation (14), that

X˜ 2
|X˜ 1

= x˜1
∼ N

(
Σ21Σ−1

11 x˜1
,Σ22 − Σ21Σ−1

11 Σ12

)
. (18)

Thus any marginal, and any conditional distribution of a multivariate normal joint distribution is also
multivariate normal, as the choices of X˜ 1

and X˜ 2
are arbitrary.
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SAMPLING DISTRIBUTION FOR NORMAL SAMPLES

THEOREM If X1, ..., Xn is a random sample from a normal distribution, say Xi ∼ N(µ, σ2), then

(a) X is independent of
{
Xi −X, i = 1, ..., n

}
(b) X and s2 are independent random variables
(c) The random variable

(n− 1)s2

σ2
=

1
σ2

n∑

i=1

(
Xi −X

)2

has a chi-squared distribution with n− 1 degrees of freedom.

Proof: (a) The joint pdf X1, ..., Xn is the multivariate normal density

fX1,...,Xn(x1, ..., xn) =
(

1
2π

)n/2 1
|Σ|1/2

exp
{
−1

2
(x˜− µ

˜
)T Σ−1(x˜− µ

˜
)
}

where Σ = σ2In, and In is the n × n identity matrix. Consider the multivariate transformation to
Y1, ..., Yn where

Y1 = X

Yi = Xi −X, i = 2, ..., n



 ⇐⇒





X1 = Y1 −
n∑

i=2
Yi

Xi = Yi + Y1, i = 2, ..., n

Thus, in vector terms Y˜ = AX˜ , or equivalently X˜ = A−1Y˜ , where A is the n × n matrix with (i, j)th
element

[A]ij =





1− 1
n

i = j and i 6= 1,

1
n

i = 1

− 1
n

otherwise

that is, we have a linear transformation, and the Jacobian of the transformation does not depend on
any y. Note that

n∑

i=1

(xi − µ)2 =
n∑

i=1

(xi − x + x− µ)2 =
n∑

i=1

(xi − x)2 + n (x− µ)2

where x =
1
n

n∑

i=1

xi. Note also that the joint pdf of X1, ..., Xn is, in scalar form

fX1,..,Xn(x1, .., xn) =
(

1
2πσ2

)n/2

exp

{
− 1

2σ2

n∑

i=1

(xi − µ)2
}

=
(

1
2πσ2

)n/2

exp

{
− 1

2σ2

[
n∑

i=1

(xi − x)2 + n (x̄− µ)2
]}

.

Now

x1 − x = −
n∑

i=2

(xi − x) = −
n∑

i=2

yi
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and so
n∑

i=1

(xi − x)2 = (x1 − x)2 +
n∑

i=2

(xi − x)2 =

(
−

n∑

i=2

yi

)2

+
n∑

i=2

y2
i

The Jacobian of the transformation is n, so the joint density of Y1, ..., Yn is given by direct substitution
into (1)

fY1,..,Yn(y1, .., yn) = n

(
1

2πσ2

)n/2

exp



−

1
2σ2




(
−

n∑

i=2

yi

)2

+
n∑

i=2

y2
i + n (y1 − µ)2








= n

(
1

2πσ2

)n/2

exp



−

1
2σ2




(
−

n∑

i=2

yi

)2

+
n∑

i=2

y2
i






× exp

{
− n

2σ2
(y1 − µ)2

}

Hence

fY1,..,Yn(y1, .., yn) = fY2,..,Yn(y2, .., yn)fY1(y1)

and therefore Y1 is independent of Y2, ..., Yn. Hence X is independent of the random variables terms{
Yi = Xi − X̄, i = 2, ..., n

}
. Finally, X is also independent of X1 −X as

X1 −X = −
n∑

i=2

(
Xi −X

)

(b) s2 is a function only of
{
Xi −X, i = 1, ..., n

}
. As X is independent of these variables, X and s2

are also independent.

(c)The random variables that appear as sums of squares terms that joint pdf are
n∑

i=1
(Xi − µ)2

σ2
=

n∑
i=1

(
Xi −X

)2

σ2
+

n
(
X − µ

)2

σ2

or V1 = V2 + V3, say. Now, Xi ∼ N(µ, σ2), so therefore

(Xi − µ)2

σ2
∼ N(0, 1) =⇒ (Xi − µ)2

σ2
∼ χ2

1 ≡ Ga

(
1
2
,
1
2

)
=⇒

n∑
i=1

(Xi − µ)2

σ2
= V1 ∼ χ2

n

as the Xis are independent, and the sum of n independent Ga(1/2, 1/2) variables has a Ga(n/2, 1/2)
distribution. Similarly, as X ∼ N(µ, σ2/n), V3 ∼ χ2

1 By part (b), V2 and V3 are independent, and so
the mgfs of V1, V2 and V3 are related by

MV1(t) = MV2(t)MV3(t) =⇒ MV2(t) =
MV1(t)
MV3(t)

As V1 and V3 are Gamma random variables, MV1 and MV3 are given by

MV1(t) =
(

1/2
1/2− t

)n/2

,MV3(t) =
(

1/2
1/2− t

)1/2

=⇒ MV2(t) =
(

1/2
1/2− t

)(n−1)/2

which is also the mgf of a Gamma random variable, and hence

V2 =
(n− 1)s2

σ2
∼ χ2

n−1


