NORMAL DISTRIBUTION FACTSHEET

The details of the PROOFS of these results are not examinable in M2S1. However, you should know the results themselves.

MULTIVARIATE NORMAL DISTRIBUTION: MARGINALS AND CONDITIONALS

Suppose that vector random variable $\underset{\sim}{X}=\left(X_{1}, X_{2}, \ldots, X_{k}\right)^{\top}$ has a multivariate normal distribution with pdf given by

$$
\begin{equation*}
f_{\underset{X}{x}}(\underset{\sim}{x})=\left(\frac{1}{2 \pi}\right)^{k / 2} \frac{1}{|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2} x^{\top} \Sigma^{-1} x\right\} \tag{1}
\end{equation*}
$$

where Σ is the $k \times k$ variance-covariance matrix (we can consider here the case where the expected value $\underset{\sim}{\mu}$ is the $k \times 1$ zero vector; results for the general case are easily available by transformation).

Consider partitioning $\underset{\sim}{X}$ into two components $\underset{\sim}{X}$ and $\underset{\sim}{X}$ 位 dimensions d and $k-d$ respectively, that is,

$$
\underset{\sim}{X}=\left[\begin{array}{l}
{\underset{X}{x}}_{1} \\
{\underset{\sim}{X}}_{2}
\end{array}\right] .
$$

We attempt to deduce
(a) the marginal distribution of $\underset{\sim}{X}$, and
(b) the conditional distribution of $\underset{\sim}{X}$ given that $\underset{\sim}{X}={\underset{\sim}{x}}_{1}$.

First, write

$$
\Sigma=\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]
$$

where Σ_{11} is $d \times d, \Sigma_{22}$ is $(k-d) \times(k-d), \Sigma_{21}=\Sigma_{12}^{\top}$, and

$$
\Sigma^{-1}=V=\left[\begin{array}{ll}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right]
$$

so that $\Sigma V=I_{k}$ (I_{r} is the $r \times r$ identity matrix) gives

$$
\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]\left[\begin{array}{ll}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right]=\left[\begin{array}{cc}
I_{d} & 0 \\
0 & I_{k-d}
\end{array}\right]
$$

and more specifically the four relations

$$
\begin{align*}
& \Sigma_{11} V_{11}+\Sigma_{12} V_{21}=I_{d} \tag{2}\\
& \Sigma_{11} V_{12}+\Sigma_{12} V_{22}=0 \tag{3}\\
& \Sigma_{21} V_{11}+\Sigma_{22} V_{21}=0 \tag{4}\\
& \Sigma_{21} V_{12}+\Sigma_{22} V_{22}=I_{k-d} . \tag{5}
\end{align*}
$$

From the multivariate normal pdf in equation (1), we can re-express the term in the exponent as

$$
\begin{equation*}
{\underset{\sim}{x}}^{\top} \Sigma^{-1} \underset{\sim}{x}={\underset{\sim}{x}}^{\top} V_{11}{\underset{\sim}{x}}_{1}+{\underset{\sim}{x}}^{\top} V_{12}{\underset{\sim}{2}}_{2}+{\underset{\sim}{x}}_{2}^{\top} V_{21}{\underset{1}{x}}+{\underset{\sim}{x}}_{2}^{\top} V_{22}{\underset{2}{2}}_{2} . \tag{6}
\end{equation*}
$$

In order to compute the marginal and conditional distributions, we must complete the square in x_{2} in this expression. We can write

$$
\begin{equation*}
{\underset{\sim}{x}}^{\top} \Sigma^{-1} \underset{\sim}{x}=\left({\underset{\sim}{x}}_{2}-\underset{\sim}{m}\right)^{\top} M\left({\underset{\sim}{x}}_{2}-\underset{\sim}{m}\right)+\underset{\sim}{c} \tag{7}
\end{equation*}
$$

and by comparing with equation (6) we can deduce that, for quadratic terms in ${\underset{\sim}{x}}_{2}$,

$$
\begin{equation*}
{\underset{\sim}{x}}_{2}^{\top} V_{22}{\underset{\sim}{x}}_{2}={\underset{\sim}{x}}_{2}^{\top} M{\underset{\sim}{x}}_{2} \quad \therefore \quad M=V_{22} \tag{8}
\end{equation*}
$$

for linear terms

$$
\begin{equation*}
{\underset{\sim}{x}}_{2}^{\top} V_{21}{\underset{\sim}{x}}_{1}=-{\underset{\sim}{x}}_{2}^{\top} M \underset{\sim}{m} \quad \therefore \quad \underset{\sim}{m}=-V_{22}^{-1} V_{21}{\underset{\sim}{x}}_{1} \tag{9}
\end{equation*}
$$

and for constant terms

$$
\begin{equation*}
{\underset{\sim}{x}}_{1}^{\top} V_{11}{\underset{\sim}{x}}_{1}=\underset{\sim}{c}+{\underset{\sim}{m}}^{\top} M \underset{\sim}{m} \quad \therefore \quad \underset{\sim}{c}={\underset{\sim}{x}}_{1}^{\top}\left(V_{11}-V_{21}^{\top} V_{22}^{-1} V_{21}\right){\underset{\sim}{x}}_{1} \tag{10}
\end{equation*}
$$

thus yielding all the terms required for equation (7), that is

$$
\begin{equation*}
{\underset{\sim}{x}}^{\top} \Sigma^{-1} \underset{\sim}{x}=\left({\underset{\sim}{x}}_{2}+V_{22}^{-1} V_{21}{\underset{\sim}{x}}_{1}\right)^{\top} V_{22}\left({\underset{\sim}{x}}_{2}+V_{22}^{-1} V_{21}{\underset{\sim}{x}}_{1}\right)+{\underset{\sim}{x}}_{1}^{\top}\left(V_{11}-V_{21}^{\top} V_{22}^{-1} V_{21}\right){\underset{\sim}{x}}_{1}, \tag{11}
\end{equation*}
$$

which, crucially, is a sum of two terms, where the first can be interpreted as a function of $\underset{\sim}{x}$, given $\underset{\sim}{x}$, and the second is a function of ${\underset{\sim}{x}}_{1}$ only.
Hence we have an immediate factorization of the full joint pdf using the chain rule for random variables;

$$
\begin{equation*}
f_{\underset{\sim}{X}}(\underset{\sim}{x})=f_{{\underset{\sim}{X}}_{2}} \mid \underset{\sim}{X} 1\left(\underset{\sim}{x} \mid{\underset{\sim}{x}}_{1}\right) f_{{\underset{\sim}{X}}_{1}}\left({\underset{\sim}{x}}_{1}^{x}\right) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{{\underset{\sim}{X}}_{2}} \left\lvert\,{\underset{\sim}{X}}_{1}\left({\underset{\sim}{x}}_{2} \mid{\underset{\sim}{x}}_{1}\right) \propto \exp \left\{-\frac{1}{2}\left({\underset{\sim}{x}}_{2}+V_{22}^{-1} V_{21}{\underset{\sim}{x}}_{1}\right)^{\top} V_{22}\left({\underset{\sim}{x}}_{2}+V_{22}^{-1} V_{21}{\underset{\sim}{x}}_{1}\right)\right\}\right. \tag{13}
\end{equation*}
$$

giving that

$$
\begin{equation*}
{\underset{\sim}{X}}_{2} \mid{\underset{\sim}{X}}_{1}=\underset{\sim}{x} 1 \sim N\left(-V_{22}^{-1} V_{21}^{x} \underset{\sim}{x}, V_{22}^{-1}\right) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{{\underset{\sim}{X}}_{1}}\left({\underset{\sim}{x}}_{1}\right) \propto \exp \left\{-\frac{1}{2}{\underset{\sim}{x}}_{1}^{\top}\left(V_{11}-V_{21}^{\top} V_{22}^{-1} V_{21}\right){\underset{\sim}{x}}_{1}\right\} \tag{15}
\end{equation*}
$$

giving that

$$
\begin{equation*}
{\underset{\sim}{X}}_{1} \sim N\left(0,\left(V_{11}-V_{21}^{\top} V_{22}^{-1} V_{21}\right)^{-1}\right) \tag{16}
\end{equation*}
$$

But, from equation (3), $\Sigma_{12}=-\Sigma_{11} V_{12} V_{22}^{-1}$, and then from equation (2), substituting in Σ_{12},

$$
\Sigma_{11} V_{11}-\Sigma_{11} V_{12} V_{22}^{-1} V_{21}=I_{d} \quad \therefore \quad \Sigma_{11}=\left(V_{11}-V_{12} V_{22}^{-1} V_{21}\right)^{-1}=\left(V_{11}-V_{21}^{\top} V_{22}^{-1} V_{21}\right)^{-1}
$$

Hence, by inspection of equation (16), we conclude that

$$
\begin{equation*}
\underset{\sim}{X}{ }_{1} \sim N\left(0, \Sigma_{11}\right) \tag{17}
\end{equation*}
$$

that is, we can extract the Σ_{11} block of Σ to define the marginal variance-covariance matrix of $\underset{\sim}{X}$.
Using similar arguments, we can define the conditional distribution from equation (14) more precisely. First, from equation (3), $V_{12}=-\Sigma_{11}^{-1} \Sigma_{12} V_{22}$, and then from equation (5), substituting in V_{12}

$$
-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} V_{22}+\Sigma_{22} V_{22}=I_{k-d} \quad \therefore \quad V_{22}^{-1}=\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}=\Sigma_{22}-\Sigma_{12}^{\top} \Sigma_{11}^{-1} \Sigma_{12}
$$

Finally, from equation (3), taking transposes on both sides, we have that $V_{21} \Sigma_{11}+V_{22} \Sigma_{21}=0$. Then pre-multiplying by V_{22}^{-1}, and post-multiplying by Σ_{11}^{-1}, we have

$$
V_{22}^{-1} V_{21}+\Sigma_{21} \Sigma_{11}^{-1}=0 \quad \therefore \quad V_{22}^{-1} V_{21}=-\Sigma_{21} \Sigma_{11}^{-1}
$$

so we have, substituting into equation (14), that

$$
\begin{equation*}
\underset{\sim}{X}{\underset{\sim}{2}}^{X}{\underset{\sim}{X}}_{1}=\underset{\sim}{x} 1 \sim N\left(\Sigma_{21} \Sigma_{11}^{-1} \underset{\sim}{x}, \Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right) . \tag{18}
\end{equation*}
$$

Thus any marginal, and any conditional distribution of a multivariate normal joint distribution is also multivariate normal, as the choices of $\underset{\sim}{X}$ and $\underset{\sim}{X} \underset{2}{ }$ are arbitrary.

SAMPLING DISTRIBUTION FOR NORMAL SAMPLES

THEOREM If X_{1}, \ldots, X_{n} is a random sample from a normal distribution, say $X_{i} \sim N\left(\mu, \sigma^{2}\right)$, then
(a) \bar{X} is independent of $\left\{X_{i}-\bar{X}, i=1, \ldots, n\right\}$
(b) \bar{X} and s^{2} are independent random variables
(c) The random variable

$$
\frac{(n-1) s^{2}}{\sigma^{2}}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

has a chi-squared distribution with $n-1$ degrees of freedom.
Proof: (a) The joint pdf X_{1}, \ldots, X_{n} is the multivariate normal density

$$
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=\left(\frac{1}{2 \pi}\right)^{n / 2} \frac{1}{|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(\underset{\sim}{x}-\underset{\sim}{\mu})^{T} \Sigma^{-1}(\underset{\sim}{x}-\underset{\sim}{\mu})\right\}
$$

where $\Sigma=\sigma^{2} I_{n}$, and I_{n} is the $n \times n$ identity matrix. Consider the multivariate transformation to Y_{1}, \ldots, Y_{n} where

$$
\left.\begin{array}{l}
Y_{1}=\bar{X} \\
Y_{i}=X_{i}-\bar{X}, i=2, \ldots, n
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}
X_{1}=Y_{1}-\sum_{i=2}^{n} Y_{i} \\
X_{i}=Y_{i}+Y_{1}, \quad i=2, \ldots, n
\end{array}\right.
$$

Thus, in vector terms $\underset{\sim}{Y}=A \underset{\sim}{X}$, or equivalently $\underset{\sim}{X}=A^{-1} \underset{\sim}{Y}$, where A is the $n \times n$ matrix with (i, j) th element

$$
[A]_{i j}=\left\{\begin{aligned}
1-\frac{1}{n} & i=j \text { and } i \neq 1 \\
\frac{1}{n} & i=1 \\
-\frac{1}{n} & \text { otherwise }
\end{aligned}\right.
$$

that is, we have a linear transformation, and the Jacobian of the transformation does not depend on any y. Note that

$$
\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}+\bar{x}-\mu\right)^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2}
$$

where $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$. Note also that the joint pdf of X_{1}, \ldots, X_{n} is, in scalar form

$$
\begin{aligned}
f_{X_{1}, . ., X_{n}}\left(x_{1}, . ., x_{n}\right) & =\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right\} \\
& =\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2}\right]\right\}
\end{aligned}
$$

Now

$$
x_{1}-\bar{x}=-\sum_{i=2}^{n}\left(x_{i}-\bar{x}\right)=-\sum_{i=2}^{n} y_{i}
$$

and so

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\left(x_{1}-\bar{x}\right)^{2}+\sum_{i=2}^{n}\left(x_{i}-\bar{x}\right)^{2}=\left(-\sum_{i=2}^{n} y_{i}\right)^{2}+\sum_{i=2}^{n} y_{i}^{2}
$$

The Jacobian of the transformation is n, so the joint density of Y_{1}, \ldots, Y_{n} is given by direct substitution into (1)

$$
\begin{aligned}
f_{Y_{1}, ., Y_{n}}\left(y_{1}, . ., y_{n}\right) & =n\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\left(-\sum_{i=2}^{n} y_{i}\right)^{2}+\sum_{i=2}^{n} y_{i}^{2}+n\left(y_{1}-\mu\right)^{2}\right]\right\} \\
& =n\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\left(-\sum_{i=2}^{n} y_{i}\right)^{2}+\sum_{i=2}^{n} y_{i}^{2}\right]\right\} \times \exp \left\{-\frac{n}{2 \sigma^{2}}\left(y_{1}-\mu\right)^{2}\right\}
\end{aligned}
$$

Hence

$$
f_{Y_{1}, . ., Y_{n}}\left(y_{1}, . ., y_{n}\right)=f_{Y_{2}, \ldots, Y_{n}}\left(y_{2}, . ., y_{n}\right) f_{Y_{1}}\left(y_{1}\right)
$$

and therefore Y_{1} is independent of Y_{2}, \ldots, Y_{n}. Hence \bar{X} is independent of the random variables terms $\left\{Y_{i}=X_{i}-\bar{X}, i=2, \ldots, n\right\}$. Finally, \bar{X} is also independent of $X_{1}-\bar{X}$ as

$$
X_{1}-\bar{X}=-\sum_{i=2}^{n}\left(X_{i}-\bar{X}\right)
$$

(b) s^{2} is a function only of $\left\{X_{i}-\bar{X}, i=1, \ldots, n\right\}$. As \bar{X} is independent of these variables, \bar{X} and s^{2} are also independent.
(c)The random variables that appear as sums of squares terms that joint pdf are

$$
\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{\sigma^{2}}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}}+\frac{n(\bar{X}-\mu)^{2}}{\sigma^{2}}
$$

or $V_{1}=V_{2}+V_{3}$, say. Now, $X_{i} \sim N\left(\mu, \sigma^{2}\right)$, so therefore

$$
\frac{\left(X_{i}-\mu\right)^{2}}{\sigma^{2}} \sim N(0,1) \Longrightarrow \frac{\left(X_{i}-\mu\right)^{2}}{\sigma^{2}} \sim \chi_{1}^{2} \equiv G a\left(\frac{1}{2}, \frac{1}{2}\right) \Longrightarrow \frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{\sigma^{2}}=V_{1} \sim \chi_{n}^{2}
$$

as the X_{i} s are independent, and the sum of n independent $G a(1 / 2,1 / 2)$ variables has a $G a(n / 2,1 / 2)$ distribution. Similarly, as $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right), V_{3} \sim \chi_{1}^{2}$ By part (b), V_{2} and V_{3} are independent, and so the mgfs of V_{1}, V_{2} and V_{3} are related by

$$
M_{V_{1}}(t)=M_{V_{2}}(t) M_{V_{3}}(t) \Longrightarrow M_{V_{2}}(t)=\frac{M_{V_{1}}(t)}{M_{V_{3}}(t)}
$$

As V_{1} and V_{3} are Gamma random variables, $M_{V_{1}}$ and $M_{V_{3}}$ are given by

$$
M_{V_{1}}(t)=\left(\frac{1 / 2}{1 / 2-t}\right)^{n / 2}, M_{V_{3}}(t)=\left(\frac{1 / 2}{1 / 2-t}\right)^{1 / 2} \Longrightarrow M_{V_{2}}(t)=\left(\frac{1 / 2}{1 / 2-t}\right)^{(n-1) / 2}
$$

which is also the mgf of a Gamma random variable, and hence

$$
V_{2}=\frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

