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GENERATING FUNCTIONS FACTSHEET

For random variable X with mass/density function fX , the moment generating function, or mgf,
of X, MX , is defined by

MX(t) = EfX
[etX ]

if this expectation exists for all values of t ∈ (−h, h) for some h > 0, that is,

MX(t) =





∑
etxfX(x) X Discrete

∫
etxfX(x)dx X Continuous

where the sum/integral is over X.

KEY PROPERTIES OF MGFS

1. There is a 1-1 correspondence between generating functions and distributions: if X1

and X2 are random variables taking values on X with mass/density functions fX1 and fX2 , and
mgfs MX1 and MX2 respectively, then

fX1(x) ≡ fX2(x), x ∈ X ⇐⇒ MX1(t) ≡ MX2(t), t ∈ (−h, h)

2. If X is a discrete random variable, the rth derivative of MX evaluated at t, M
(r)
X (t), is given by

M
(r)
X (t) =

dr

dsr
{MX(s)}s=t =

dr

dsr

{∑
esxfX(x)

}
s=t

=
∑

xretxfX(x)

and hence
M

(r)
X (0) =

∑
xrfX(x) = EfX

[Xr]

Similarly, if X is a continuous random variable, the rth derivative of MX is given by

M
(r)
X (t) =

dr

dsr

{∫
esxfX(x)dx

}

s=t

=
∫

xretxfX(x)dx

and hence
M

(r)
X (0) =

∫
xrfX(x)dx = EfX

[Xr]

3. If X is a discrete random variable, then

MX(t) =
∑

etxfX(x) =
∑{ ∞∑

r=0

(tx)r

r!

}
fX(x) = 1 +

∞∑

r=1

tr

r!

{∑
xrfX(x)

}
= 1 +

∞∑

r=1

tr

r!
EfX

[Xr]

The identical result holds in the continuous case.

4. From the general result for expectations of functions of random variables

MY (t) = EfY
[etY ] = EfX

[et(aX+b)] = EfX
[et(aX+b)] = ebtEfX

[eatX ] = ebtMX(at).

Therefore, if Y = aX + b,
MY (t) = ebtMX(at)
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5. Let X1, ..., Xk be independent random variables with mgfs MX1 , ...,MXk
respectively. Then if

random variable Y is defined by Y = X1 + ... + Xk,

MY (t) =
k∏

i=1

MXi(t)

To see this for k = 2, consider X1 and X2 independent, integer-valued, discrete r.v.s, then if
Y = X1 + X2, by the Theorem of Total Probability, partitioning the event Y = y as follows

Y = y ≡
⋃
x1

(Y = y ∩X1 = x1) ≡
⋃
x1

(X1 = x1 ∩X2 = y − x1),

so by Axiom 3 and the independence assumption

fY (y) = P [Y = y] =
∑
x1

P [X1 = x1 ∩X2 = y − x1] =
∑
x1

P [X1 = x1]P [X2 = y − x1]

=
∑
x1

fX1(x1)fX2(y − x1).

Hence

MY (t) = EfY
[etY ] =

∑
y

etyfY (y) =
∑

y

ety

{∑
x1

fX2 (y − x1) fX2 (x1)

}

=
∑
x2

et(x1+x2)

{∑
x1

fX2 (x2) fX2 (x1)

}
(changing variables to x2 = y − x1)

=

{∑
x1

etx1fX1 (x1)

}{∑
x2

etx2fX2 (x2)

}
= MX1(t)MX2(t) ¦

The result follows for general k by recursion. The result for continuous random variables follows
in the obvious way. If X1, ..., Xk are identically distributed, then MXi(t) ≡ MX(t), say, for all
i, so

MY (t) =
k∏

i=1

MX(t) = {MX(t)}k

6. For random variable X, with mass/density function fX , the factorial moment (fmgf) or prob-
ability generating function (pgf), of X, denoted GX , is defined by

GX(t) = EfX
[tX ] = EfX

[eX log t] = MX(log t)

if this expectation exists for all values of t ∈ (1− h, 1 + h) for some h > 0. Note

G
(r)
X (t) =

dr

dsr
{GX(s)}s=t = EfX

[
X(X − 1)...(X − r + 1)tX−r

]

∴ G
(r)
X (1) = EfX

[X(X − 1)...(X − r + 1)]

where EfX
[X(X − 1)...(X − r + 1)] is the rth factorial moment. For discrete random variables,

it can be shown by using a Taylor series expansion of GX that, for r = 1, 2, ...,

G
(r)
X (0)
r!

= P [X = r]


