GENERATING FUNCTIONS FACTSHEET

For random variable X with mass/density function f_X , the **moment generating function**, or mgf, of X, M_X , is defined by

$$M_X(t) = E_{f_X}[e^{tX}]$$

if this expectation exists for all values of $t \in (-h, h)$ for some h > 0, that is,

$$M_X(t) = \begin{cases} \sum e^{tx} f_X(x) & X \text{ Discrete} \\ \int e^{tx} f_X(x) dx & X \text{ Continuous} \end{cases}$$

where the sum/integral is over X.

KEY PROPERTIES OF MGFS

1. There is a 1-1 correspondence between generating functions and distributions: if X_1 and X_2 are random variables taking values on X with mass/density functions f_{X_1} and f_{X_2} , and mgfs M_{X_1} and M_{X_2} respectively, then

$$f_{X_1}(x) \equiv f_{X_2}(x), x \in X \iff M_{X_1}(t) \equiv M_{X_2}(t), t \in (-h, h)$$

2. If X is a discrete random variable, the rth derivative of M_X evaluated at t, $M_X^{(r)}(t)$, is given by

$$M_X^{(r)}(t) = \frac{d^r}{ds^r} \left\{ M_X(s) \right\}_{s=t} = \frac{d^r}{ds^r} \left\{ \sum e^{sx} f_X(x) \right\}_{s=t} = \sum x^r e^{tx} f_X(x)$$

and hence

$$M_X^{(r)}(0) = \sum x^r f_X(x) = E_{f_X}[X^r]$$

Similarly, if X is a continuous random variable, the rth derivative of M_X is given by

$$M_X^{(r)}(t) = \frac{d^r}{ds^r} \left\{ \int e^{sx} f_X(x) d_x \right\}_{s=t} = \int x^r e^{tx} f_X(x) dx$$

and hence

$$M_X^{(r)}(0) = \int x^r f_X(x) dx = E_{f_X}[X^r]$$

3. If X is a discrete random variable, then

$$M_X(t) = \sum e^{tx} f_X(x) = \sum \left\{ \sum_{r=0}^{\infty} \frac{(tx)^r}{r!} \right\} f_X(x) = 1 + \sum_{r=1}^{\infty} \frac{t^r}{r!} \left\{ \sum x^r f_X(x) \right\} = 1 + \sum_{r=1}^{\infty} \frac{t^r}{r!} E_{f_X}[X^r]$$

The identical result holds in the continuous case.

4. From the general result for expectations of functions of random variables

$$M_Y(t) = E_{f_Y}[e^{tY}] = E_{f_X}[e^{t(aX+b)}] = E_{f_X}[e^{t(aX+b)}] = e^{bt}E_{f_X}[e^{atX}] = e^{bt}M_X(at).$$

Therefore, if $Y = aX + b$,
 $M_Y(t) = e^{bt}M_X(at)$

5. Let $X_1, ..., X_k$ be independent random variables with mgfs $M_{X_1}, ..., M_{X_k}$ respectively. Then if random variable Y is defined by $Y = X_1 + ... + X_k$,

$$M_Y(t) = \prod_{i=1}^k M_{X_i}(t)$$

To see this for k = 2, consider X_1 and X_2 independent, integer-valued, discrete r.v.s, then if $Y = X_1 + X_2$, by the **Theorem of Total Probability**, partitioning the event Y = y as follows

$$Y = y \equiv \bigcup_{x_1} (Y = y \cap X_1 = x_1) \equiv \bigcup_{x_1} (X_1 = x_1 \cap X_2 = y - x_1),$$

so by Axiom 3 and the independence assumption

$$f_Y(y) = P[Y = y] = \sum_{x_1} P[X_1 = x_1 \cap X_2 = y - x_1] = \sum_{x_1} P[X_1 = x_1] P[X_2 = y - x_1]$$
$$= \sum_{x_1} f_{X_1}(x_1) f_{X_2}(y - x_1).$$

Hence

$$M_{Y}(t) = E_{f_{Y}}[e^{tY}] = \sum_{y} e^{ty} f_{Y}(y) = \sum_{y} e^{ty} \left\{ \sum_{x_{1}} f_{X_{2}}(y - x_{1}) f_{X_{2}}(x_{1}) \right\}$$
$$= \sum_{x_{2}} e^{t(x_{1} + x_{2})} \left\{ \sum_{x_{1}} f_{X_{2}}(x_{2}) f_{X_{2}}(x_{1}) \right\} \quad \text{(changing variables to } x_{2} = y - x_{1})$$
$$= \left\{ \sum_{x_{1}} e^{tx_{1}} f_{X_{1}}(x_{1}) \right\} \left\{ \sum_{x_{2}} e^{tx_{2}} f_{X_{2}}(x_{2}) \right\} = M_{X_{1}}(t) M_{X_{2}}(t) \quad .$$

The result follows for general k by recursion. The result for continuous random variables follows in the obvious way. If $X_1, ..., X_k$ are **identically distributed**, then $M_{X_i}(t) \equiv M_X(t)$, say, for all *i*, so

$$M_Y(t) = \prod_{i=1}^{k} M_X(t) = \{M_X(t)\}^k$$

6. For random variable X, with mass/density function f_X , the factorial moment (fmgf) or probability generating function (pgf), of X, denoted G_X , is defined by

$$G_X(t) = E_{f_X}[t^X] = E_{f_X}[e^{X \log t}] = M_X(\log t)$$

if this expectation exists for all values of $t \in (1 - h, 1 + h)$ for some h > 0. Note

$$G_X^{(r)}(t) = \frac{d^r}{ds^r} \{G_X(s)\}_{s=t} = E_{f_X} \left[X(X-1)...(X-r+1)t^{X-r} \right]$$

$$\therefore G_X^{(r)}(1) = E_{f_X} [X(X-1)...(X-r+1)]$$

where $E_{f_X}[X(X-1)...(X-r+1)]$ is the *r*th factorial moment. For discrete random variables, it can be shown by using a Taylor series expansion of G_X that, for r = 1, 2, ...,

$$\frac{G_X^{(r)}(0)}{r!} = P[X = r]$$