DISTRIBUTIONS FACTSHEET

DISCRETE DISTRIBUTIONS

Models based on an independent sequence of identical binary trials with success probability θ.

- BERNOULLI X is the total number of successes in one trial.
- BINOMIAL X is the total number of successes in n trials.
- GEOMETRIC X is the total number of trials required to obtain one success.
- NEGATIVE BINOMIAL X is the total number of trials required to obtain \mathbf{n} successes. Alternative form given by considering $Y=X-n$, to give a distribution on $\{0,1,2, \ldots\}$.
- POISSON X is the count of the number of events in a given (continuous) time interval. The Poisson distribution is obtained as the limiting form of the $\operatorname{Binomial}(n, \theta)$ distribution, with $\lambda=n \theta$ held fixed.

Connections:

- Bernoulli/Binomial

$$
X_{1}, \ldots, X_{n} \sim \operatorname{Bernoulli}(\theta) \quad \Rightarrow \quad Y=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, \theta)
$$

- Geometric/Negative Binomial

$$
X_{1}, \ldots, X_{n} \sim \operatorname{Geometric}(\theta) \quad \Rightarrow \quad Y=\sum_{i=1}^{n} X_{i} \sim \operatorname{NegBinomial}(n, \theta)
$$

- Binomial/Poisson

$$
X_{n} \sim \operatorname{Binomial}(n, \theta) \longrightarrow X \sim \operatorname{Poisson}(\lambda)
$$

where $\lambda=n \theta$ is held fixed and $n \longrightarrow \infty$.

- Negative Binomial/Poisson

$$
X_{n} \sim \operatorname{NegBinomial}(n, \theta) \quad Y_{n}=X_{n}-n \longrightarrow Y \sim \operatorname{Poisson}(\lambda)
$$

where $\lambda=n(1-\theta)$ is held fixed and $n \longrightarrow \infty$.

Summations of Independent RVs:

- Binomial

$$
\left.\begin{array}{l}
X \sim \operatorname{Binomial}(m, \theta) \\
Y \sim \operatorname{Binomial}(n, \theta)
\end{array}\right\} \quad \Rightarrow \quad T=X+Y \sim \operatorname{Binomial}(m+n, \theta)
$$

- Negative Binomial

$$
\begin{aligned}
& X \sim N e g B i n o m i a l \\
& (m, \theta) \\
& Y \sim N e g B i n o m i a l \\
& \sim
\end{aligned}(n, \theta) \quad\{\quad \Rightarrow \quad T=X+Y \sim \operatorname{NegBinomial}(m+n, \theta)
$$

- Poisson

$$
\left.\begin{array}{l}
X \sim \operatorname{Poisson}\left(\lambda_{X}\right) \\
Y \sim \operatorname{Poisson}\left(\lambda_{Y}\right)
\end{array}\right\} \quad \Rightarrow \quad T=X+Y \sim \operatorname{Poisson}\left(\lambda_{X}+\lambda_{Y}\right)
$$

CONTINUOUS DISTRIBUTIONS

- Distributions on \mathbb{R}^{+}

Begin with $U \sim \operatorname{Uniform}(0,1)$:

- $X=-\frac{1}{\lambda} \log U \sim$ Exponential (λ), for $\lambda>0$.
- $Y=X^{1 / \alpha} \sim W e i b u l l(\alpha, \lambda)$, for $\alpha>0$.
- If $X_{1}, \ldots, X_{n} \sim \operatorname{Exponential}(\lambda)$, independent, then $Y=\sum_{i=1}^{n} X_{i} \sim \operatorname{Gamma}(n, \lambda)$.
- If $X \sim \operatorname{Gamma}\left(\alpha_{X}, \lambda\right)$ and $Y \sim \operatorname{Gamma}\left(\alpha_{Y}, \lambda\right)$ are independent, then

$$
T=X+Y \sim \operatorname{Gamma}\left(\alpha_{X}+\alpha_{Y}, \lambda\right)
$$

- Poisson Process links

Consider events occurring independently at a constant rate λ in continuous time. Let

$$
\begin{aligned}
X(t, s) & \equiv \text { number of events occurring in interval }[t, s) \\
X_{i} & \equiv \text { time between event } i-1 \text { and event } i \\
Y_{n} & \equiv \text { time of event } n
\end{aligned}
$$

- $X(t, s) \sim \operatorname{Poisson}(\lambda(s-t))$
- $X(0, t)$ and $X(t, s)$ are independent for $s>t$.
- $X_{i} \sim \operatorname{Exponential}(\lambda)$, with X_{1}, X_{2}, \ldots independent.
- $Y_{n}=\sum_{i=1}^{n} X_{i} \sim \operatorname{Gamma}(n, \lambda)$.
- Distributions on \mathbb{R} : The Normal distribution and connections
- Suppose $X \sim N(0,1)$. Then $Y=\mu+\sigma X \sim N\left(\mu, \sigma^{2}\right)$.
- Suppose $X \sim N(0,1)$. Then $Y=X^{2} \sim \operatorname{Gamma}(1 / 2,1 / 2) \equiv \operatorname{Chisquared}(1)$.
- If $X_{1}, X_{2} \sim N(0,1)$, and $V \sim \operatorname{Chisquared}(\nu)$ are all independent, then

$$
T_{1}=\frac{X_{1}}{X_{2}} \sim \text { Cauchy } \quad T_{2}=\frac{X_{1}}{\sqrt{V / \nu}} \sim \operatorname{Student}(\nu)
$$

- If $V_{1} \sim \operatorname{Chisquared}\left(\nu_{1}\right)$ and $V_{2} \sim \operatorname{Chisquared}\left(\nu_{2}\right)$ are independent, then

$$
T_{3}=\frac{V_{1} / \nu_{1}}{V_{2} / \nu_{2}} \sim \operatorname{Fisher}\left(\nu_{1}, \nu_{2}\right)
$$

- If $X_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $X_{2} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$ are independent, then

$$
Y=X_{1}+X_{2} \sim N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

- Distribution on $(0,1)$: The Beta distribution
- If $X_{1} \sim \operatorname{Gamma}\left(\alpha_{1}, \beta\right)$ and $X_{2} \sim \operatorname{Gamma}\left(\alpha_{2}, \beta\right)$ are independent, then

$$
V=\frac{X_{1}}{X_{1}+X_{2}} \sim \operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right)
$$

