M2S1 - EXERCISES 8

Introduction To Statistics: Estimation

1. Suppose that $X_1, ..., X_n$ are a random sample from a $Poisson(\lambda)$ distribution. Define statistics

$$T_1 = \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$$
 $T_2 = s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$

Show, using properties of Poisson random variables, properties of expectation and variance, and the results

$$E_{f_{X_i}}[X_i] = Var_{f_{X_i}}[X_i] = \lambda \qquad E_{f_{X_i}}[X_i^2] = Var_{f_{X_i}}[X_i] + \left\{ E_{f_{X_i}}[X_i] \right\}^2$$
$$E_{f_{X_i}}[T_1] = E_{f_{X_i}}[T_2] = \lambda$$

that

$$E_{f_{T_1}}[T_1] = E_{f_{T_2}}[T_2] = \lambda.$$

2. Let s_n^2 denote the sample variance derived from a random sample of size n from $N(\mu, \sigma^2)$, so that

$$V_n = \frac{(n-1)s_n^2}{\sigma^2} \sim \chi_{n-1}^2$$

Show, using the Central Limit Theorem that

$$\frac{\sqrt{n-1}(s_n^2 - \sigma^2)}{\sigma^2 \sqrt{2}} \xrightarrow{d} Z \sim N(0, 1) \qquad \text{so that} \qquad s_n^2 \xrightarrow{d} N\left(\sigma^2, \frac{2\sigma^4}{n-1}\right)$$

3. Suppose that $X_1, ..., X_n$ are a random sample from a $Ga(\alpha, \beta)$ distribution. Find the method of moments estimators of α and β .

4. Find the maximum likelihood estimators of the unknown parameters in the following probability densities on the basis of a random sample of size n.

(i)
$$f_X(x;\theta) = \theta x^{\theta-1}, \ 0 < x < 1, \theta > 0.$$

(ii) $f_X(x;\theta) = (\theta+1)x^{-\theta-2}, \ 1 < x, \theta > 0.$
(iii) $f_X(x;\theta) = \theta^2 x \exp\{-\theta x\}, \ 0 < x, \theta > 0.$
(iv) $f_X(x;\theta) = 2\theta^2 x^{-3}, \ \theta \le x, \theta > 0.$
(v) $f_X(x;\theta) = \frac{\theta}{2} \exp\{-\theta |x|\}, \ -\infty < x < \infty, \ \theta > 0.$
(vi) $f_X(x;\theta_1,\theta_2) = \frac{1}{\theta_2 - \theta_1}, \ \theta_1 \le x \le \theta_2.$
(vii) $f_X(x;\theta_1,\theta_2) = \theta_1 \theta_2^{\theta_1} x^{-\theta_1 - 1}, \ \theta_2 \le x, \ \theta_1, \theta_2 > 0.$

5. An estimator, T, is an *unbiased* estimator of function $\tau(\theta)$ of parameter θ if

$$\mathbf{E}_{f_T}[T] = \tau(\theta)$$

where f_T is the sampling distribution of T. The bias, b(T), and Mean Squared Error, MSE, of an estimator T of $\tau(\theta)$ are defined respectively by

$$b(T) = \mathbf{E}_{f_T}[T] - \tau(\theta) \qquad \qquad MSE(T) = \mathbf{E}_{f_T}[(T - \tau(\theta))^2]$$

Suppose that $X_1, ..., X_n$ are a random sample from a $Poisson(\lambda)$ distribution. Find the maximum likelihood estimator of λ , and show that this estimator is unbiased. Also, find the maximum likelihood estimator of $\tau(\lambda) = e^{-\lambda} = \mathbb{P}[X = 0].$

6. Suppose that $X_1, ..., X_n$ are a random sample from the probability distribution with pdf

$$f_X(x;\lambda,\eta) = \lambda e^{-\lambda(x-\eta)} \quad x > \eta$$

and zero otherwise. Find the maximum likelihood estimators of λ and η .

7. Suppose that $X_1, ..., X_n$ are a random sample from the probability distribution with pdf

$$f_X(x;\theta) = \frac{1}{\theta}e^{-x/\theta}$$
 $x > 0.$

Show that the sample mean \overline{X} is an unbiased estimator of θ . Show also that, if random variable Y_1 is defined as $Y_1 = \min \{X_1, ..., X_n\}$ then random variable $Z = nY_1$ is also unbiased for θ .

8. Suppose that $X_1, ..., X_n$ are a random sample from a $Uniform(\theta - 1, \theta + 1)$ distribution. Show that the sample mean \overline{X} is an unbiased estimator of θ . Let Y_1 and Y_n be the smallest and largest order statistics derived from $X_1, ..., X_n$. Show also that random variable $M = (Y_1 + Y_n)/2$ is an unbiased estimator of θ .

9. Suppose that $X_1, ..., X_n$ are a random sample from a $Ga(2, \lambda)$ distribution.

- (i) Find the maximum likelihood estimator of λ .
- (ii) Find the maximum likelihood estimator, denoted T say, of $\tau = 1/\lambda$.
- (iii) Find $E_{f_T}[T]$ and $E_{f_T}[T^2]$.

Prove that

$$T \xrightarrow{p} \tau$$

as $n \longrightarrow \infty$.