M2S1 - EXERCISES 6

Connections between Distributions

1. The joint pdf $f_{X, Y}$ of positive random variables X and Y is specified as

$$
f_{X, Y}(x, y)=f_{X \mid Y}(x \mid y) f_{Y}(y)
$$

where $X \mid Y=y \sim \operatorname{Exponential}(y)$ and $Y \sim \operatorname{Gamma}(\alpha, \beta)$. Identify the marginal distribution of X.
2. The Bivariate Normal Distribution: Suppose that X_{1} and X_{2} are i.i.d $\operatorname{Normal}(0,1)$ random variables. Let random variables Y_{1} and Y_{2} be defined by

$$
\begin{array}{rlrl}
Y_{1} & =\mu_{1}+\sigma_{1} \sqrt{1-\rho^{2}} X_{1}+\sigma_{1} \rho X_{2} \\
Y_{2} & =\mu_{2}+\sigma_{2} X_{2} & \text { or equivalently } & {\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right]=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]+\left[\begin{array}{rr}
\sigma_{1} \sqrt{1-\rho^{2}} & \sigma_{1} \rho \\
0 & \sigma_{2}
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]}
\end{array}
$$

for positive constants σ_{1} and σ_{2}, and $|\rho|<1$. Find the joint pdf of $\left(Y_{1}, Y_{2}\right)$.
Show that, marginally for $i=1,2, Y_{i} \sim \operatorname{Normal}\left(\mu_{i}, \sigma_{i}^{2}\right)$, and that conditionally

$$
\begin{aligned}
& Y_{1} \mid Y_{2}=y_{2} \quad \sim \text { Normal }\left(\mu_{1}+\frac{\rho \sigma_{1}}{\sigma_{2}}\left(y_{2}-\mu_{2}\right), \sigma_{1}^{2}\left(1-\rho^{2}\right)\right) \\
& Y_{2} \mid Y_{1}=y_{1} \quad \sim \text { Normal }\left(\mu_{2}+\frac{\rho \sigma_{2}}{\sigma_{1}}\left(y_{1}-\mu_{1}\right), \sigma_{2}^{2}\left(1-\rho^{2}\right)\right)
\end{aligned}
$$

Find the correlation of Y_{1} and Y_{2}.
3. Suppose that U_{1} and U_{2} are i.i.d $\operatorname{Uniform}(0,1)$ random variables. Let random variables Z_{1} and Z_{2} be defined by

$$
\begin{aligned}
& Z_{1}=\sqrt{-2 \log U_{1}} \cos \left(2 \pi U_{2}\right) \\
& Z_{2}=\sqrt{-2 \log U_{1}} \sin \left(2 \pi U_{2}\right)
\end{aligned}
$$

(log is the natural logarithm). Find the joint pdf of $\left(Z_{1}, Z_{2}\right)$.
4. Suppose that U is a $\operatorname{Uniform}(0,1)$ random variable. Find the distribution of

$$
X=-\beta \log U
$$

Suppose that an unlimited sequence of $\operatorname{Uniform}(0,1)$ random variables is available. Using the distribution of X, and results from lectures, describe how to generate
(i) a $\operatorname{Gamma}(k, \lambda)$ random variable, for integer $k \geq 0$.
(ii) a realization of a Poisson process with rate μ.
(iii) a Chisquare $(\nu) \equiv \operatorname{Gamma}\left(\frac{\nu}{2}, \frac{1}{2}\right)$ random variable, where ν is a positive, real parameter.
(iv) a $\operatorname{Student}(n)$ random variable, where n is a positive integer parameter.

Use the results from question 3., and results given in lectures and the printed notes.

