M2S1 - EXERCISES 5

Covariance And Multivariate Distributions

1. Suppose that X and Y have joint pdf given by

$$f_{XY}(x,y) = cxy(1-x-y)$$
 $0 < x < 1, 0 < y < 1, 0 < x + y < 1.$

for some constant c > 0. Find the covariance of X and Y.

- 2. Suppose that X and Y have joint pdf that is constant on the range $\mathbb{X}^{(2)} \equiv (0,1) \times (0,1)$, and zero otherwise.
 - (a) Find the marginal pdf of random variables U = X/Y and $V = -\log(XY)$, stating clearly the range of the transformed random variable in each case.
 - (b) Find the pdf and cdf of Z = X Y.
- 3. Suppose that continuous random variables X_1, X_2, X_3 are independent, and have marginal pdfs specified by

$$f_{X_i}(x_i) = c_i x_i^i e^{-x_i} \qquad x_i > 0$$

for i = 1, 2, 3, where c_1, c_2 and c_3 are normalizing constants. Find the joint pdf of random variables Y_1, Y_2, Y_3 defined by

$$Y_1 = X_1/(X_1 + X_2 + X_3)$$
 $Y_2 = X_2/(X_1 + X_2 + X_3)$ $Y_3 = X_1 + X_2 + X_3$

and evaluate the marginal expectation of Y_1 .

4. Suppose that X and Y are continuous random variables with pdf given by

$$f_{X,Y}(x,y) = \frac{1}{2\pi} \exp\left\{-\frac{1}{2}(x^2 + y^2)\right\} \qquad x, y \in \mathbb{R}$$

- (a) Let random variable U be defined by U = X/Y. Find the pdf of U.
- (b) Suppose now that S is a random variable, independent of X and Y, with pdf given by

$$f_S(s) = c(\nu)s^{\nu/2-1}e^{-s/2}$$
 $s > 0$

where ν is a positive integer and $c(\nu)$ is a normalizing constant depending on ν . Find the pdf of random variable T defined by

$$T = \frac{X}{\sqrt{S/\nu}}$$

5. Suppose that the joint pdf of random variables X and Y is specified via the conditional density $f_{X|Y}$ and the marginal density f_Y as

$$f_{X|Y}(x|y) = \sqrt{\frac{y}{2\pi}} \exp\left\{-\frac{yx^2}{2}\right\} \qquad x \in \mathbb{R} \qquad f_Y(y) = c(\nu)y^{\nu/2 - 1}e^{-\nu y/2} \qquad y > 0$$

where ν is a positive integer. Find the marginal pdf of X.