M2S1 - EXERCISES 4

Univariate Transformations

1. Suppose that X is a continuous random variable with density function given by

$$
f_{X}(x)=4 x^{3} \quad 0<x<1
$$

and zero otherwise. Find the density functions of the following random variables
(a) $Y=X^{4}$
(b) $\quad W=e^{X}$
(c) $Z=\log X$
(d) $U=(X-0.5)^{2}$

Find the monotonic decreasing function H such that the random variable V, defined by $V=H(X)$, has a density function that is constant on the interval $(0,1)$, and zero otherwise.
2. The measured radius of a circle, R, is a continuous random variable with density function given by

$$
f_{R}(r)=6 r(1-r) \quad 0<r<1
$$

and zero otherwise. Find the density functions of the circumference and the area of the circle.
3. (Harder) Suppose that X is a continuous random variable with density function given by

$$
f_{X}(x)=\frac{\alpha}{\beta}\left(1+\frac{x}{\beta}\right)^{-(\alpha+1)} \quad x>0
$$

for constants $\alpha, \beta>0$, and zero otherwise. Find the density function and cdf of the random variable defined by $Y=\log X$, and the density function of the random variable defined by $Z=\xi+\theta Y$.

Discrete And Continuous Multivariate Distributions

4. Suppose that X and Y are discrete random variables with joint mass function given by

$$
f_{X, Y}(x, y)=c \frac{2^{x+y}}{x!y!} \quad x, y=0,1,2, \ldots
$$

and zero otherwise, for some constant c.
(i) Find the value of c, and the marginal mass functions of X and Y.
(ii) Prove that X and Y are independent random variables, that is, that

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

for all $x, y=0,1, \ldots$.
5. Continuous random variables X and Y have joint cdf, $F_{X, Y}$ defined by

$$
F_{X, Y}(x, y)=\left(1-e^{-x}\right)\left(\frac{1}{2}+\frac{1}{\pi} \tan ^{-1} y\right) \quad x>0,-\infty<y<\infty
$$

with

$$
F_{X, Y}(x, y)=0 \quad x \leq 0
$$

Find the joint pdf, $f_{X, Y}$. Are X and Y independent? Justify your answer.
6. Suppose that X and Y are continuous random variables with joint pdf given by

$$
f_{X, Y}(x, y)=c x(1-y) \quad 0<x<1,0<y<1
$$

and zero otherwise for some constant c. Are X and Y independent random variables?
Find the value of c, and, for the set $A \equiv\{(x, y): 0<x<y<1\}$, the probability

$$
P[X<Y]=\int_{A} \int f_{X, Y}(x, y) d x d y
$$

7. Suppose that the joint pdf of X and Y is given by

$$
f_{X, Y}(x, y)=24 x y \quad x>0, y>0, x+y<1
$$

and zero otherwise. Find the marginal pdf of X, f_{X}.
Hint: Sketch the region on which the joint density is non-zero; remember that the integrand is only non-zero for some part of the integral range
8. Suppose that X and Y are continuous random variables with joint pdf given by

$$
f_{X, Y}(x, y)=\frac{1}{2 x^{2} y} \quad 1 \leq x<\infty, 1 / x \leq y \leq x
$$

and zero otherwise.

Derive
(i) the marginal pdf of X,
(ii) the marginal pdf of Y,
(iii) the conditional pdf of X given $Y=y$,
(iv) the conditional pdf of Y given $X=x$.

Find the (marginal) expectation of $Y, E_{f_{Y}}[Y]$.

