M2S1 - EXERCISES 1

Conditional Probability, The Theorem of Total Probability and Bayes Theorem.

1. For events A and B in sample space Ω, under what conditions does the equation

$$
P(A)=P(A \mid B)+P\left(A \mid B^{\prime}\right)
$$

hold?
2. A biased coin is tossed repeatedly, with tosses mutually independent; the probability of the coin showing Heads on any toss is p. Let H_{n} be the event that an even number of Heads have been obtained after n tosses, let $p_{n}=P\left(H_{n}\right)$, and define $p_{0}=1$. By conditioning on H_{n-1} and using the Theorem of Total Probability, show that, for $n \geq 1$,

$$
\begin{equation*}
p_{n}=(1-2 p) p_{n-1}+p . \tag{1}
\end{equation*}
$$

Find a solution to this difference equation, valid for all $n \geq 0$, of the form $p_{n}=A+B \lambda^{n}$, where A, B and λ are constants to be identified. Prove that if $p<1 / 2$ then $p_{n}>1 / 2$ for all $n \geq 1$, and find the limiting value of p_{n} as $n \longrightarrow \infty$. Is this limit intuitively reasonable?
3. A simple model for weather forecasting involves classifying days as either Fine or Wet, and then assuming that the weather on a given day will be the same as the weather on the preceding day with probability p. Suppose that the probability of fine weather on day indexed 1 (say Jan 1st) is denoted θ. Let θ_{n} denote the probability that day indexed n is Fine. For $n=2,3, \ldots$, find a difference equation for θ_{n} similar to that in equation (1) in Problem 2 above, and use this difference equation to find θ_{n} explicitly as a function of n, p and θ. Find the limiting value of θ_{n} as $n \longrightarrow \infty$.
4. (a) Consider two coins, of which one is normal and the other has a Head on both sides. A coin is selected and tossed n times with tosses mutually independent. Evaluate the conditional probability that the selected coin is normal, given that the first n tosses are Heads. [You will need to use the Binomial distribution from M1S.]
(b) Now consider two coins, of which one is normal and the other is biased so that the probability of obtaining a Head is $p>1 / 2$. Again, one of the coins is selected and tossed n times. Let E be the event that the n tosses result in k Heads and $n-k$ Tails, and let F be the event that the coin is fair. Find expressions for $P(E)$ and $P(F \mid E)$.
5. The probability that a tree has n flowers is given by $(1-p) p^{n}$ for $n=0,1,2, \ldots$. Each flower has probability $2 / 3$ of being pollinated and producing fruit, and each fruit has probability of $1 / 4$ of not ripening fully. It can be assumed that each developmental stage is independent of the others.
(a) Deduce that the probability of a flower producing a ripe fruit is $1 / 2$.
(b) Given that a tree bears r ripe fruit, calculate the conditional probability that it originally had n flowers. [You will need to use the Negative Binomial expansion.]
6. A company is to introduce mandatory drug testing for its employees. The test used is very accurate, in that it it gives a correct positive test (detects drugs when they are present in a blood sample) with probability 0.99 , and a correct negative test (does not detect drugs when they are not present) with probability 0.98 . If an individual tests positive on the first test, a second blood sample is tested. It is assumed that only 1 in 5000 employees actually does provide a blood sample with drugs present.

What is the probability that the presence of drugs in a blood sample is detected correctly, given
(i) a positive result on the first test (before the second test is carried out)
(ii) a positive result on both first and second tests.

Assume that the results of tests are conditionally independent, that is, independent given the presence or absence of drugs in the sample.

