
M2S1 - EXERCISES 1

Conditional Probability, The Theorem of Total Probability and Bayes Theorem.

1. For events A and B in sample space Ω, under what conditions does the equation

P (A) = P (A|B) + P (A|B′)

hold ?

2. A biased coin is tossed repeatedly, with tosses mutually independent; the probability of the coin
showing Heads on any toss is p. Let Hn be the event that an even number of Heads have been obtained
after n tosses, let pn = P (Hn), and define p0 = 1. By conditioning on Hn−1 and using the Theorem
of Total Probability, show that, for n ≥ 1,

pn = (1− 2p)pn−1 + p. (1)

Find a solution to this difference equation, valid for all n ≥ 0, of the form pn = A + Bλn, where A, B
and λ are constants to be identified. Prove that if p < 1/2 then pn > 1/2 for all n ≥ 1, and find the
limiting value of pn as n −→∞. Is this limit intuitively reasonable ?

3. A simple model for weather forecasting involves classifying days as either Fine or Wet, and then
assuming that the weather on a given day will be the same as the weather on the preceding day with
probability p. Suppose that the probability of fine weather on day indexed 1 (say Jan 1st) is denoted
θ. Let θn denote the probability that day indexed n is Fine. For n = 2, 3, ..., find a difference equation
for θn similar to that in equation (1) in Problem 2 above, and use this difference equation to find θn

explicitly as a function of n, p and θ. Find the limiting value of θn as n −→∞.

4. (a) Consider two coins, of which one is normal and the other has a Head on both sides. A coin is
selected and tossed n times with tosses mutually independent. Evaluate the conditional probability that
the selected coin is normal, given that the first n tosses are Heads. [You will need to use the Binomial
distribution from M1S.]

(b) Now consider two coins, of which one is normal and the other is biased so that the probability of
obtaining a Head is p > 1/2. Again, one of the coins is selected and tossed n times. Let E be the event
that the n tosses result in k Heads and n − k Tails, and let F be the event that the coin is fair. Find
expressions for P (E) and P (F |E).

5. The probability that a tree has n flowers is given by (1 − p)pn for n = 0, 1, 2, .... Each flower has
probability 2/3 of being pollinated and producing fruit, and each fruit has probability of 1/4 of not
ripening fully. It can be assumed that each developmental stage is independent of the others.

(a) Deduce that the probability of a flower producing a ripe fruit is 1/2.
(b) Given that a tree bears r ripe fruit, calculate the conditional probability that it originally had n
flowers. [You will need to use the Negative Binomial expansion.]

6. A company is to introduce mandatory drug testing for its employees. The test used is very accurate,
in that it it gives a correct positive test (detects drugs when they are present in a blood sample) with
probability 0.99, and a correct negative test (does not detect drugs when they are not present) with
probability 0.98. If an individual tests positive on the first test, a second blood sample is tested. It is
assumed that only 1 in 5000 employees actually does provide a blood sample with drugs present.

What is the probability that the presence of drugs in a blood sample is detected correctly, given
(i) a positive result on the first test (before the second test is carried out)
(ii) a positive result on both first and second tests.

Assume that the results of tests are conditionally independent, that is, independent given the presence
or absence of drugs in the sample.
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