M2S1 - ASSESSED COURSEWORK 1

To be handed in no later than Wednesday, 2nd November, 12.00pm.

Please hand in to the Mathematics General Office

(a) The number of perforations successfully stamped into a 1 cm square of material used in a filter is a discrete random variable, N, with probability mass function (pmf) f_N defined by

$$f_N(n) = k_1 \frac{(-\log(1-\phi))^n}{n!}$$
 $n = 0, 1, 2, ...$

and zero otherwise, for some parameter ϕ , and constant k_1 . (Note: as always, log means \log_e or ln)

(i) State the range of values that ϕ can take in order for this to be a valid pmf.

[1 MARK]

- (ii) Find an expression for k_1 as a function of ϕ .
- (iii) Find an expression for P[N > 0].

[2 MARKS]

[2 MARKS]

(b) The amount of liquid that flows through a single perforation in unit time is also a random variable, X, with the probability density function (pdf) f_X given by

$$f_X(x) = k_2 x \exp\{-\beta x\} \qquad x > 0$$

and zero otherwise, for parameter $\beta > 0$, and constant k_2 .

(i) Find an expression for k_2 as a function of β .

[1 MARK]

- (ii) Find the cumulative distribution function of X, F_X .
- (iii) Find an expression for P[X > x].

[2 MARKS]

[2 MARKS]

(c) Suppose that the flows through different perforations are independent stochastic phenomena, so that the random variables X_1, X_2, \ldots corresponding to the flows through perforations labelled 1, 2, ... are independent, and have the same probability distribution as X from (b).

The total flow through the filter is the sum of the flows through the individual perforations. Let T denote the total flow through a 1cm square of filter material in unit time. By using the partition of the event $(T \leq t)$ for t > 0 given by

$$(T \le t) \equiv \bigcup_{n=0}^{\infty} (N = n \cap T \le t).$$

and elementary properties of moment generating functions, find expressions for the expectation and variance of T.

Hint: if we condition on N = n, and n > 0, then T can be represented as the sum of n independent and identically distributed random variables X_1, X_2, \ldots, X_n .

[10 MARKS]