## M2S1 - ASSESSED COURSEWORK 1: Hints for part (c)

For continuous random variable $Z$ with $\operatorname{pdf} f_{Z}$ and $\operatorname{cdf} F_{Z}$, from first principles, we have

$$
E_{f_{Z}}[g(Z)]=\int g(z) f_{Z}(z) d z
$$

and

$$
F_{Z}(z)=P[Z \leq z]=\int_{-\infty}^{z} f_{Z}(s) d s \quad \Longleftrightarrow \quad f_{Z}(z)=\frac{d}{d s}\left\{F_{Z}(s)\right\}_{s=z}
$$

so putting these together we get

$$
E_{f_{Z}}[g(Z)]=\int g(z) \frac{d}{d s}\left\{F_{Z}(s)\right\}_{s=z} d z .
$$

Secondly, it is (usually) legitimate to exchange the order of differentiation and summation, that is, if

$$
H(z)=\sum_{k} H_{k}(z)
$$

then

$$
h(z)=\frac{d}{d s}\{H(s)\}_{s=z}=\frac{d}{d s}\left\{\sum_{k} H_{k}(s)\right\}_{s=z}=\sum_{k} \frac{d}{d s}\left\{H_{k}(s)\right\}_{s=z}=\sum_{k} h_{k}(z)
$$

say. Similarly, it is (usually) legitimate to exchange the order of integration and summation.
Finally, if $X_{1}, \ldots, X_{n}$ are independent and identically distributed random variables, and

$$
Y=\sum_{i=1}^{n} X_{i}
$$

then lecture notes give results for both the mgf and expectation of $Y$ in terms of the mgf and expectation of $X_{1}, \ldots, X_{n}$.

Using these results, and the results given in lectures, you should find that you can compute the required expectation and variance of variable $T$ using partition given in the original hint, after computing only

- $E_{f_{X}}[X]$,
- $E_{f_{X}}\left[X^{2}\right]$, and/or
- $M_{X}$.
where $X$ is the variable from part (b). You should find that you do not have to compute the pdf or cdf of $T$.

