M1S TUTORIAL SHEET: WEEK 6

Random variables provide a mathematically convenient means of describing the outcomes of experiments. A random variable X is merely a function that maps a sample outcome ω in the sample space Ω of an experiment to a real number x, that is

$$X: \quad \Omega \longrightarrow \mathbb{R}$$
$$\omega \longmapsto x$$

and $X(\omega) = x$. Usually, X maps Ω only onto a subset of \mathbb{R} ; this subset is the **range** of the random variable, and can be denoted \mathbb{X} .

An event $E \subseteq \Omega$, which is a *collection* of sample outcomes, is mapped to a *collection* of real-numbers, X_E , say.

A special case of this type of mapping arises when Ω is of the form

$$\Omega = \{\omega_1, \omega_2, \omega_3, ...\}$$

that is, when Ω is a countable set. In this case, the range of random variable X is also countable and

$$X = \{x_1, x_2, x_3, ...\}.$$

In this situation, the random variable is termed discrete.

For any event E, by construction, we must have that

$$P(E) \equiv P[X \in X_E]$$

and hence can shift attention to specification of the probability on the right-hand side, that is the **probability** distribution of X. This specification is typically achieved via the **probability mass function** which is denoted f_X , and is defined by

$$f_X(x) \equiv P[X = x]$$

for real-values of x; note that $f_X(x)$ is automatically **zero** if $x \notin X$.

An alternative method of specifying the probability distribution of X is the **cumulative distribution function**, which is denoted F_X , and defined by

$$F_X(x) \equiv P[X \le x]$$

for real-values of x.