SUMS OF RANDOM VARIABLES: A KEY PGF RESULT

Suppose that X_1 and X_2 are discrete random variables with ranges X_1 and X_2 , probability mass functions f_{X_1} and f_{X_2} and probability generating functions G_{X_1} and G_{X_2} respectively. Suppose also that X_1 and X_2 are independent. Define discrete random variable Y by

$$Y = X_1 + X_2$$

Using the Theorem of Total Probability, by partitioning on the different possible values of X_1 , for y in an appropriate range \mathbf{Y}

$$egin{aligned} f_Y(y) &= \mathrm{P} \left[\,\, Y = y \,\,
ight] &= \sum_x \,\, \mathrm{P} \left[\,\, (X_1 = x) \cap (X_2 = y - x) \,\,
ight] \ \ &= \sum_x \,\,\, \mathrm{P} \left[\,\, X_1 = x \,\,
ight] \mathrm{P} \left[\,\, X_2 = y - x \,\,
ight] \ \ &= \sum_x \,\,\, f_{X_1}(x) f_{X_2}(y - x) \end{aligned}$$

where the second line follows from the independence of X_1 and X_2 , and all summations are over $x \in \mathbb{X}_1$. Hence we now have an expression for the pmf for the new variable Y.

Now,

$$egin{aligned} G_Y(t) &= \sum_y f_Y(y) t^y = \sum_y \left\{ \sum_x f_{X_1}(x) f_{X_2}(y-x)
ight\} t^y \ &= \sum_{x_1} \sum_{x_2} f_{X_1}(x_1) f_{X_2}(x_2) t^{x_1+x_2} \quad ext{changing variables to } x_1 = x \quad x_2 = y-x \ &= \left\{ \sum_{x_1} f_{X_1}(x_1) t^{x_1}
ight\} \left\{ \sum_{x_2} f_{X_2}(x_2) t^{x_2}
ight\} \ &= G_{X_1}(t) \ G_{X_2}(t) \end{aligned}$$

so therefore

$$G_Y(t) = G_{X_1}(t) G_{X_2}(t)$$

EXTENSION

If $X_1, X_2, ..., X_n$ are independent discrete random variables with pgfs $G_{X_1}, G_{X_2}, ..., G_{X_n}$ respectively, and discrete random variable Y is defined by

$$Y = \sum_{i=1}^{n} X_i$$

then by induction on n using the above result we have that

$$G_Y(t) = \prod_{i=1}^n G_{X_i}(t)$$

so that if $X_1, X_2, ..., X_n$ are also identically distributed with pgf G_X then

$$G_Y(t) = \{G_X(t)\}^n$$

(see, for example, the Bernoulli/Binomial pgfs or the Geometric/Negative Binomial pgfs)