TRANSFORMATIONS OF RANDOM VARIABLES: WORKED EXAMPLES

EXAMPLE
The maximum temperature in degrees Fahrenheit, X, measured in a type of chemical reaction varies between
experiments according to a pdf fx given by

fx(x)zxeXp{—%xQ} z>0

and zero otherwise. The maximum temperature measured in degrees Celsius, is a continuous random variable Y

defined in terms of X by

Y- g(x—sz)

Note first that the range of the transformed variable is Y = {y Ty > —%32} and the pdf of Y is computed by
first inspecting the cdf of Y. From first principles,

Fy(y) =P[Y <y]=P [g(x—sz) < y]

:P[X§§y+32]

= Fx <§y+32>

On differentiation using the chain rule, and recalling that the derivative of the cdf is the pdf, we have
9, (9 9 /9 1/9 2 5
frly) = ng <gy +32> =5 <gy + 32> exp {—5 <3y + 32> } y > _532

EXAMPLE
If continuous random variable U has a Uniform distribution on the interval (0,1), so that

fulu)=1 Fy(u)=u O<u<1

then to find the probability distribution of random variable X defined by

1 U
X =~log [ ——
)\Og<1—U>

we proceed as follows: By inspection, the range of the transformed variable is (—o00, 00), and from first principles,

and hence on differentiation, we have

(1 + ekx) )\ekx _ ekx}\ekx _ )\ekx

5 = 5 zeR
(1 + er=) (1+ er=)

fulu) =




EXAMPLE
If continuous random variable U has a Uniform distribution on the interval (0, 1), consider the random variable
X defined by
logU J

log(1—9)

for parameter 6 (0 < 6 < 1), where |a]| is the integer part of a for real value a. The range of the transformed
variable is the set

x-1+|

X={1,2,3,..}

and from first principles, for z € X

Fy(a) :P[ng]:P[1+ {LUG)J gx]

log(1—
logU
=P||—— | <z-1
|t ) =]
_ logU ..
=P Hlog 1= Q)J < x] as x is integer-valued
=PllogU > xlog(l - 6)) as0<f<1 = log(1-6)<0

=PU>(1-60)*=1-Fy((1-6)%)
=1-(1-6)* rx=1,2,3,..
and hence

X ~ Geometric(8)

EXAMPLE
Random variable X measures the speed of a molecule of mass m in a gas at some temperature. Kinetic
theory suggests that the pdf of X can be expressed as

fx(x)= 4\/?302 exp { —Az?} z>0

for some constant A > 0. The kinetic energy of the molecule is a continuous random variable Y defined by

mX?

Y =
2

The pdf of Y is computed as follows from the cdf; for y > 0

mX?
2

Fy(y) =P[Y§y]=P[ Sy]

=P X2<2—y]
V m V m

=P Xg,/z—y] —PlX<—,/2—y
m m

(1)



as X is a positive random variable. Hence the pdf is obtained by differentiation as

That is, we have that, inspecting the terms in y

Y ~ Gamma <§ g)

2’ m

Note here that T (%) = %l" (%) and

1 o0 oo _ oo oo
r <§> :/ 2/2 e iy :/ ()% e (21) dt = 2/ et dt:/ et dt = /x
0 0 0 —o00

setting 2 = x, and using the integral result from the Normal pdf proof.

EXAMPLE
A projectile is fired from the origin at velocity V' and angle T from the horizontal. It lands a distance X
away, where for gravitational constant g,

2
X = v sin 27T
g
(i) If V is constant, but T" has a Uniform distribution on (0, 7/2) then
2 s 2t s
t) = — t< = Fr(t) = — t< =
fr(t) p 0< <3 r(t) — 0< <3

VQ
The range of X is <O, 7), and for z in this range, the cdf of X is obtained as follows: by definition,

VQ
P[X<x]:P[—sin2T§x]
g
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Hence, by inspection of the graph for sine, and consideration of the inverse sine function, we have that

2

V? sin2T < x = 2T < sin™! (%) or 2T > 7 —sin™! (%)

as the sin function is not 1-1. Hence

P[XSJU]:PPTSsin_l (%)} +P[2TZ7T—sin_1 (=30)}

Fx(z) = Fr G sin”! (%)) Tt G (7~ sin™ (%)D

and so

2
Fx(z) = -7%-lsin_1 (%) +1-— %% (7r —sin™?! (ﬁ)) = %sin_1 (ﬁ) O<z< VT

On differentiation, we have the density of X as

f (x)—; O<x<v—2
T R ViR =22 g

(ii) If T is constant, but V has density

fvlv) = in exp {—v*} 0<w

Jr

then X has range (0, 00), and

V2 9 gz gz gx
Fx(z)=P[X <a] =P [ - sin2T < x] P [V < sinzT] PIve /| = v (257

and on differentiation, we have

f(x)_4gxe{_gx} g11_4x3ge{_gx} 0<a
M= JrsneT P\ sinerS Vesmer2yz  Vr VsmeT CP A simeT

Again
_ 5a a—1 _
fx(x)= (e (a)x exp {—fz}
where 3
_ 9 __9
¢T3 P =mar

as again I’ (%) = %1" (%),and hence

3 g
XNGamma <§,m> .



MATHEMATICAL BACKGROUND

Consider a discrete/continuous random variable X with range X and probability distribution described by
mass/pdf fx, or cdf Fx. Suppose g is a real-valued function whose domain includes X, and suppose that

g: X—Y

Ty
Then Y = ¢g(X) is also a random variable as Y is a function from 2 to R.

Consider first the cdf of Y, Fy, evaluated at a point ¥ € R. We have

Z fx(x) if X is discrete
TEAy

/ fx(z) dz if X is continuous
A'y

where
Ay={zeX : g(x) <y}

Attention thus centres on identifying, and computing the probability content of, the set is A,,.

1-1 TRANSFORMATIONS

The mapping g(X) is a function of X from X which is 1-1 and onto Y if,
(i) for each z € X, there exists one and only one y such that y = g(x), and

(ii) for each y € Y, there exists an x € X such that g(z) = y.

(in this context, g is onto Y by construction). If g is 1-1 then it is also a monotonic function on X and, crucially
the inverse function ¢~' is well-defined, that is, for unique values z € X and y € Y

y=g9(x) & g ==
The following theorem gives the distribution for random variable Y = g(X) when ¢ is 1-1.
THEOREM
Let X be a random variable with mass/density function fx and support X. Let g be a 1-1 function from X

onto Y with inverse g7!. Then Y = g(X) is a random variable with support Y and

Discrete Case : The mass function of random variable Y is given by

) =fx(@'w) yveY={yl|fr¥)>0}

where z is the unique solution of y = g(x) (so that = = g~1(y)).

Continuous Case : The pdf of random variable Y is given by

@) = Ix@7 W) |5l O}, veV={y| @) >0)

1

d
where y = g(z), provided that the derivative = { ' (t)} is continuous and non-zero on Y.



PROOF
Discrete case:
By direct calculation, fy(y) =P[Y =y | =P[g(X) =y ]| =P[ X =g (y) ] = fx(z). where z = g71(y),
and hence fy (y) > 0 <= fx(z) > 0.
Continuous case: Function g is either (I) a monotonic increasing, or (II) a monotonic decreasing function.

Case (I): If g is increasing, then for z € X and y € Y, we have that g(z) < y <= = < g~ 1(y). Therefore, for
yey,

Fr(y)=PY<y]=P[gX)<y]=P[X <g'y) ] =Fx(g7'®))

and, by differentiation, because g is monotonic increasing,

fr(y) = fx (g‘l(y))% {970}, = fx (g7 ®) ‘diy {97 W)}, as % {g7'®)} >0

Case (II): If g is decreasing, then for z € X and y € Y we have g(z) <y <= x > g~ 1(y). Therefore, for y € Y,

Fy(y) =P|Y <y]|=PlgX)<y]=P[X >2¢7(y) | =1- Fx (97" (¥))

SO

as % {g7'(t)} <0.

Fr) = —~fx (@ W) S (g7 W)} = Fx W) | % {7 0},

DEFINITION

Suppose transformation g : X — Y is 1-1, and is defined by g(z) = y for € X. Then the Jacobian of the
transformation, denoted J(y), is given by

J(y) = % {70},

1

that is, the absolute value of first derivative of g~' evaluated at y = g(z). Note that the inverse transformation

1
¢~ ' : Y — X has Jacobian ——

J(2)

Note that the role of the Jacobian here is precisely the same as that of the “change of variables” term that
appears in a substitution in an integral. That is, if X and Y are the two variables so that Y = ¢(X), then by
construction

P[X € A|=P|X € B]

for sets A C X and B C Y where B is the image of A under g, B={y € Y: y = g(x) for some z € A} . Now, in
the probability equation, introducing the pdfs for X and Y, we have

A“@“EL”@@

but if g is 1-1, we have, by changing variables in the left hand integral to y = g(z) so that z = g~1(y) gives

Am@ﬂm

dx .
o dy:/Afy(y)dy

dx
Where‘ d—‘ is precisely the Jacobian term that appears above. Finally we can equate integrands, as this result
Y

holds for an arbitrary set A.



