TRANSFORMATIONS OF RANDOM VARIABLES: WORKED EXAMPLES

EXAMPLE

The maximum temperature in degrees Fahrenheit, X, measured in a type of chemical reaction varies between experiments according to a pdf f_X given by

$$f_X(x) = x \exp\left\{-\frac{1}{2}x^2\right\}$$
 $x > 0$

and zero otherwise. The maximum temperature measured in degrees Celsius, is a continuous random variable Y defined in terms of X by

 $Y = \frac{5}{9}(X - 32)$

Note first that the range of the transformed variable is $\mathbb{Y} = \{y : y > -\frac{5}{9}32\}$ and the pdf of Y is computed by first inspecting the cdf of Y. From first principles,

$$F_Y(y) = P[Y \le y] = P\left[\frac{5}{9}(X - 32) \le y\right]$$
$$= P\left[X \le \frac{9}{5}y + 32\right]$$
$$= F_X\left(\frac{9}{5}y + 32\right)$$

On differentiation using the chain rule, and recalling that the derivative of the cdf is the pdf, we have

$$f_Y(y) = \frac{9}{5}f_X\left(\frac{9}{5}y + 32\right) = \frac{9}{5}\left(\frac{9}{5}y + 32\right)\exp\left\{-\frac{1}{2}\left(\frac{9}{5}y + 32\right)^2\right\} \qquad y > -\frac{5}{9}32$$

EXAMPLE

If continuous random variable U has a Uniform distribution on the interval (0,1), so that

$$f_U(u) = 1$$
 $F_U(u) = u$ $0 < u < 1$

then to find the probability distribution of random variable X defined by

$$X = \frac{1}{\lambda} \log \left(\frac{U}{1 - U} \right)$$

we proceed as follows: By inspection, the range of the transformed variable is $(-\infty, \infty)$, and from first principles,

$$\begin{aligned} F_X(x) &= \mathbf{P} \left[X \le x \right] \\ &= \mathbf{P} \left[\frac{1}{\lambda} \log \left(\frac{U}{1 - U} \right) \le x \right] \\ &= \mathbf{P} \left[U \le \frac{e^{\lambda x}}{1 + e^{\lambda x}} \right] \\ &= F_U \left(\frac{e^{\lambda x}}{1 + e^{\lambda x}} \right) = \frac{e^{\lambda x}}{1 + e^{\lambda x}} \end{aligned}$$

and hence on differentiation, we have

$$f_U(u) = \frac{\left(1 + e^{\lambda x}\right) \lambda e^{\lambda x} - e^{\lambda x} \lambda e^{\lambda x}}{\left(1 + e^{\lambda x}\right)^2} = \frac{\lambda e^{\lambda x}}{\left(1 + e^{\lambda x}\right)^2} \qquad x \in \mathbb{R}$$

EXAMPLE

If continuous random variable U has a Uniform distribution on the interval (0, 1), consider the random variable X defined by

$$X = 1 + \left\lfloor \frac{\log U}{\log(1 - \theta)} \right\rfloor$$

for parameter θ (0 < θ < 1), where $\lfloor a \rfloor$ is the integer part of a for real value a. The range of the transformed variable is the set

$$\mathbb{X} \equiv \{1, 2, 3, \dots\}$$

and from first principles, for $x \in \mathbb{X}$

$$F_X(x) = P[X \le x] = P\left[1 + \left\lfloor \frac{\log U}{\log(1 - \theta)} \right\rfloor \le x\right]$$

$$= P\left[\left\lfloor \frac{\log U}{\log(1 - \theta)} \right\rfloor \le x - 1\right]$$

$$= P\left[\left\lfloor \frac{\log U}{\log(1 - \theta)} \right\rfloor < x\right] \quad \text{as } x \text{ is integer-valued}$$

$$= P[\log U > x \log(1 - \theta)] \quad \text{as } 0 < \theta < 1 \implies \log(1 - \theta) < 0$$

$$= P[U > (1 - \theta)^x] = 1 - F_U((1 - \theta)^x)$$

$$= 1 - (1 - \theta)^x \qquad x = 1, 2, 3, \dots$$

and hence

$$X \sim Geometric(\theta)$$

EXAMPLE

Random variable X measures the speed of a molecule of mass m in a gas at some temperature. Kinetic theory suggests that the pdf of X can be expressed as

$$f_X(x) = 4\sqrt{\frac{\lambda^3}{\pi}}x^2 \exp\left\{-\lambda x^2\right\} \qquad x > 0$$

for some constant $\lambda > 0$. The kinetic energy of the molecule is a continuous random variable Y defined by

$$Y = \frac{mX^2}{2}$$

The pdf of Y is computed as follows from the cdf; for y > 0

$$\begin{split} F_Y(y) &= \mathbf{P} \left[Y \leq y \right] = \mathbf{P} \left[\frac{mX^2}{2} \leq y \right] \\ &= \mathbf{P} \left[X^2 \leq \frac{2y}{m} \right] \\ &= \mathbf{P} \left[-\sqrt{\frac{2y}{m}} \leq X \leq \sqrt{\frac{2y}{m}} \right] \\ &= \mathbf{P} \left[X \leq \sqrt{\frac{2y}{m}} \right] - \mathbf{P} \left[X < -\sqrt{\frac{2y}{m}} \right] = F_X \left(\sqrt{\frac{2y}{m}} \right) \end{split}$$

as X is a **positive** random variable. Hence the pdf is obtained by differentiation as

$$f_Y(y) = \sqrt{\frac{2}{m}} \frac{1}{2} \frac{1}{\sqrt{y}} f_X \left(\sqrt{\frac{2y}{m}} \right) = \sqrt{\frac{1}{2my}} 4\sqrt{\frac{\lambda^3}{\pi}} \left(\sqrt{\frac{2y}{m}} \right)^2 \exp\left\{ -\lambda \left(\sqrt{\frac{2y}{m}} \right)^2 \right\}$$
$$= 4\sqrt{\frac{2\lambda^3}{\pi m^3}} y^{1/2} \exp\left\{ -\frac{2\lambda}{m} y \right\}$$

That is, we have that, inspecting the terms in y

$$Y \sim Gamma\left(rac{3}{2},rac{2\lambda}{m}
ight)$$

Note here that $\Gamma\left(\frac{3}{2}\right) = \frac{1}{2}\Gamma\left(\frac{1}{2}\right)$ and

$$\Gamma\left(\frac{1}{2}\right) = \int_0^\infty x^{1/2 - 1} e^{-x} dx = \int_0^\infty \left(t^2\right)^{-1/2} e^{-t^2} \left(2t\right) dt = 2 \int_0^\infty e^{-t^2} dt = \int_{-\infty}^\infty e^{-t^2} dt = \sqrt{\pi}$$

setting $t^2 = x$, and using the integral result from the Normal pdf proof.

EXAMPLE

A projectile is fired from the origin at velocity V and angle T from the horizontal. It lands a distance X away, where for gravitational constant g,

$$X = \frac{V^2}{g} \sin 2T$$

(i) If V is constant, but T has a Uniform distribution on $(0, \pi/2)$ then

$$f_T(t) = \frac{2}{\pi}$$
 $0 < t < \frac{\pi}{2}$ $F_T(t) = \frac{2t}{\pi}$ $0 < t < \frac{\pi}{2}$

The range of X is $\left(0, \frac{V^2}{g}\right)$, and for x in this range, the cdf of X is obtained as follows: by definition,

$$\mathbf{P}\left[X \le x\right] = \mathbf{P}\left[\frac{V^2}{g}\sin 2T \le x\right]$$

Hence, by inspection of the graph for sine, and consideration of the inverse sine function, we have that

$$\frac{V^2}{g}\sin 2T \le x \qquad \Longleftrightarrow \qquad 2T \le \sin^{-1}\left(\frac{gx}{V^2}\right) \quad \text{or} \quad 2T \ge \pi - \sin^{-1}\left(\frac{gx}{V^2}\right)$$

as the sin function is not 1-1. Hence

$$P[X \le x] = P\left[2T \le \sin^{-1}\left(\frac{gx}{V^2}\right)\right] + P\left[2T \ge \pi - \sin^{-1}\left(\frac{gx}{V^2}\right)\right]$$

and so

$$F_X(x) = F_T\left(\frac{1}{2}\sin^{-1}\left(\frac{gx}{V^2}\right)\right) + 1 - F_T\left(\frac{1}{2}\left(\pi - \sin^{-1}\left(\frac{gx}{V^2}\right)\right)\right)$$

which simplifies to

$$F_X(x) = \frac{2}{\pi} \frac{1}{2} \sin^{-1} \left(\frac{gx}{V^2} \right) + 1 - \frac{2}{\pi} \frac{1}{2} \left(\pi - \sin^{-1} \left(\frac{gx}{V^2} \right) \right) = \frac{2}{\pi} \sin^{-1} \left(\frac{gx}{V^2} \right) \qquad 0 < x < \frac{V^2}{g}$$

On differentiation, we have the density of X as

$$f_X(x) = \frac{2}{\pi\sqrt{V^4/g^2 - x^2}}$$
 $0 < x < \frac{V^2}{g}$

(ii) If T is constant, but V has density

$$f_V(v) = \frac{4}{\sqrt{\pi}}v^2 \exp\{-v^2\}$$
 $0 < v$

then X has range $(0, \infty)$, and

$$F_X(x) = \mathbf{P}\left[X \le x\right] = \mathbf{P}\left[\frac{V^2}{g}\sin 2T \le x\right] = \mathbf{P}\left[V^2 \le \frac{gx}{\sin 2T}\right] = \mathbf{P}\left[V \le \sqrt{\frac{gx}{\sin 2T}}\right] = F_V\left(\sqrt{\frac{gx}{\sin 2T}}\right)$$

and on differentiation, we have

$$f_X(x) = \frac{4}{\sqrt{\pi}} \frac{gx}{\sin 2T} \exp\left\{-\frac{gx}{\sin 2T}\right\} \cdot \sqrt{\frac{g}{\sin 2T}} \frac{1}{2} \frac{1}{\sqrt{x}} = \sqrt{\frac{4x}{\pi}} \sqrt[3]{\frac{g}{\sin 2T}} \exp\left\{-\frac{gx}{\sin 2T}\right\} \qquad 0 < x$$

Again

$$f_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp\{-\beta x\}$$

where

$$\alpha = \frac{3}{2} \qquad \beta = \frac{g}{\sin 2T}$$

as again $\Gamma\left(\frac{3}{2}\right) = \frac{1}{2}\Gamma\left(\frac{1}{2}\right)$, and hence

$$X \sim Gamma\left(\frac{3}{2}, \frac{g}{\sin 2T}\right).$$

MATHEMATICAL BACKGROUND

Consider a discrete/continuous random variable X with range X and probability distribution described by mass/pdf f_X , or cdf F_X . Suppose g is a real-valued function whose domain includes X, and suppose that

$$g: \quad \mathbb{X} \longrightarrow \mathbb{Y}$$
$$x \longmapsto y$$

Then Y = g(X) is also a random variable as Y is a function from Ω to \mathbb{R} .

Consider first the cdf of Y, F_Y , evaluated at a point $y \in \mathbb{R}$. We have

$$F_Y(y) = \mathbf{P}[\ Y \leq y\] = \ \mathbf{P}[\ g(X) \leq y\] = \left\{ \begin{array}{ll} \displaystyle \sum_{x \in A_y} f_X(x) & \text{if X is discrete} \\ \\ \displaystyle \int_{A_y} f_X(x) \ dx & \text{if X is continuous} \end{array} \right.$$

where

$$A_y = \{ x \in \mathbb{X} : g(x) \le y \}$$

Attention thus centres on identifying, and computing the probability content of, the set is A_y .

1-1 TRANSFORMATIONS

The mapping g(X) is a function of X from X which is 1-1 and onto Y if,

- (i) for each $x \in \mathbb{X}$, there exists one and only one y such that y = g(x), and
- (ii) for each $y \in \mathbb{Y}$, there exists an $x \in \mathbb{X}$ such that g(x) = y.

(in this context, g is onto \mathbb{Y} by construction). If g is 1-1 then it is also a **monotonic** function on \mathbb{X} and, crucially the inverse function g^{-1} is well-defined, that is, for unique values $x \in \mathbb{X}$ and $y \in \mathbb{Y}$

$$y = q(x)$$
 \Leftrightarrow $q^{-1}(y) = x$

The following theorem gives the distribution for random variable Y = g(X) when g is 1-1.

THEOREM

Let X be a random variable with mass/density function f_X and support X. Let g be a 1-1 function from X onto Y with inverse g^{-1} . Then Y = g(X) is a random variable with support Y and

Discrete Case: The mass function of random variable Y is given by

$$f_Y(y) = f_X(g^{-1}(y))$$
 $y \in \mathbb{Y} = \{ y \mid f_Y(y) > 0 \}$

where x is the unique solution of y = g(x) (so that $x = g^{-1}(y)$).

Continuous Case: The pdf of random variable Y is given by

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dt} \left\{ g^{-1}(t) \right\}_{t=y} \right| \quad y \in \mathbb{Y} = \{ y \mid f_Y(y) > 0 \}$$

where y = g(x), provided that the derivative $\frac{d}{dt} \{g^{-1}(t)\}$ is **continuous** and **non-zero** on \mathbb{Y} .

PROOF

Discrete case:

By direct calculation, $f_Y(y) = P[Y = y] = P[g(X) = y] = P[X = g^{-1}(y)] = f_X(x)$, where $x = g^{-1}(y)$, and hence $f_Y(y) > 0 \iff f_X(x) > 0$.

Continuous case: Function g is either (I) a monotonic increasing, or (II) a monotonic decreasing function.

Case (I): If g is increasing, then for $x \in \mathbb{X}$ and $y \in \mathbb{Y}$, we have that $g(x) \leq y \iff x \leq g^{-1}(y)$. Therefore, for $y \in \mathbb{Y}$,

$$F_Y(y) = P[Y \le y] = P[g(X) \le y] = P[X \le g^{-1}(y)] = F_X(g^{-1}(y))$$

and, by differentiation, because g is monotonic increasing,

$$f_Y(y) = f_X(g^{-1}(y)) \frac{d}{dt} \left\{ g^{-1}(t) \right\}_{t=y} = f_X(g^{-1}(y)) \left| \frac{d}{dy} \left\{ g^{-1}(y) \right\}_{t=y} \right| \quad \text{as } \frac{d}{dt} \left\{ g^{-1}(t) \right\} > 0.$$

Case (II): If g is decreasing, then for $x \in \mathbb{X}$ and $y \in \mathbb{Y}$ we have $g(x) \leq y \iff x \geq g^{-1}(y)$. Therefore, for $y \in \mathbb{Y}$,

$$F_Y(y) = P[Y \le y] = P[g(X) \le y] = P[X \ge g^{-1}(y)] = 1 - F_X(g^{-1}(y))$$

so

$$f_Y(y) = -f_X(g^{-1}(y))\frac{d}{dt}\left\{g^{-1}(y)\right\} = f_X(g^{-1}(y))\left|\frac{d}{dt}\left\{g^{-1}(t)\right\}_{t=y}\right| \quad \text{as } \frac{d}{dt}\left\{g^{-1}(t)\right\} < 0.$$

DEFINITION

Suppose transformation $g: \mathbb{X} \longrightarrow \mathbb{Y}$ is 1-1, and is defined by g(x) = y for $x \in \mathbb{X}$. Then the <u>Jacobian</u> of the transformation, denoted J(y), is given by

$$J(y) = \left| \frac{d}{dt} \left\{ g^{-1}(t) \right\}_{t=y} \right|$$

that is, the absolute value of first derivative of g^{-1} evaluated at y = g(x). Note that the inverse transformation $g^{-1}: \mathbb{Y} \longrightarrow \mathbb{X}$ has Jacobian $\frac{1}{J(x)}$

Note that the role of the Jacobian here is precisely the same as that of the "change of variables" term that appears in a substitution in an integral. That is, if X and Y are the two variables so that Y = g(X), then by construction

$$P[X \in A] \equiv P[X \in B]$$

for sets $A \subseteq \mathbb{X}$ and $B \subseteq \mathbb{Y}$ where B is the image of A under $g, B \equiv \{y \in \mathbb{Y} : y = g(x) \text{ for some } x \in A\}$. Now, in the probability equation, introducing the pdfs for X and Y, we have

$$\int_{A} f_X(x) \, dx \equiv \int_{B} f_Y(y) \, dy$$

but if g is 1-1, we have, by changing variables in the left hand integral to y = g(x) so that $x = g^{-1}(y)$ gives

$$\int_{A} f_{X} \left(g^{-1}(y) \right) \left| \frac{dx}{dy} \right| dy \equiv \int_{A} f_{Y}(y) dy$$

where $\left| \frac{dx}{dy} \right|$ is precisely the Jacobian term that appears above. Finally we can equate integrands, as this result holds for an **arbitrary** set A.