M1S PROBABILITY AND STATISTICS I

SYLLABUS

CHAPTER 1: Sample Spaces and Events

- 1.1 Representing uncertainty in experimental contexts
- 1.2 Manipulating Collections of Sample Outcomes

Sample outcomes

Sample spaces (discrete/continuous, finite/countable/uncountable

Events - occurrence, the Certain Event, the Impossible Event

Set theory notation

1.3 Operations of Set Theory

Binary Operations - Complement/Union/Intersection

Exhaustive/Exclusive Events

Elementary results - De Morgan's Laws

Extensions of union/intersection ideas to more than two events - finite/countable unions

Associative/Distributive Laws

Representations of Complex Systems - component networks

Disjoint unions/Partitions

Construction of Partitions

CHAPTER 2: Probability: Definitions, Interpretations, Basic Laws.

2.1 The Meaning of Probability

Interpretations of the Probability Function (relative frequency, classical, subjective)

Simple examples (0/1 experiments e.g. coin/drawing pin)

Specification of probabilities via Odds

2.2 The Mathematical Rules of Probability: The Probability Axioms

The Probability Axioms

Extensions to Axiom III to finite and countable collections of events

2.3 Corollaries to the Axioms

Probabilities for complement events

Probability of a union for non-exclusive events (The General Addition Rule)

CHAPTER 3: Conditional Probability: Conditioning on New Information.

Conditional Probability - definition, interpretation

Examples of simple calculations

Independence for two events/ Mutual independence for more than two events

The General Multiplication (or Chain) Rule for Events (link to probability trees)

3.1 The Theorem of Total Probability

Statement and Proof of Theorem

Interpretation and Key elements

Application in simple and more complicated examples

3.2 Bayes Theorem

Statement and Proof of Theorem for two events/more than two events

Interpretation: Distinction between P(A|B) and P(B|A)

Examples e.g. Medical Diagnosis, Simpson's Paradox

Prior and Posterior Odds

Conditional probability for more than two events

Conditional Independence

CHAPTER 4: Counting Techniques: Combinatorics.

Enumeration for Equally Likely Outcomes: Combinatorics Problems (Sampling from a Finite Population, Occupancy Problems, Urn Models)

4.1 Counting Operations: Basic Methods and Terminology

Multiplication principle, Factorials

Distinguishable/Indistinguishable Objects;

Sampling with/without replacement;

Ordered/unordered outcomes.

Permutations/Combinations

Binary sequence representations

4.2 Combinatorial Identities

4.3 Partitioning: The Partition formula

Examples of Partitions (e.g. Poker hands)

4.4 Occupancy Problems (Distribution Problems)

Counting Techniques for Occupancy Problems involving

- Distinguishable objects as a partitioning problem.
- Indistinguishable objects using a binary sequence representation

Examples e.g. The Birthday Problem

4.5 Urn Models

The Hypergeometric Formula: two alternative justifications

Combinatorial/conditional probability justification

Uses for the Hypergeometric formula in probability calculations (for N, R, n or r varying)

Examples e.g. Fisher's Exact Test

4.6 Generating Functions for Combinatorics Calculations

Generating functions: definitions and uses

Solution of combinatorics problems using generating functions

CHAPTER 5: Discrete Random Variables and Distributions

5.1 Random Variables

General definition

Discrete case (countable range)

5.2 Probability Mass Function

Definition, Notation, Interpretation

Properties; General Expectation and Variance; Examples.

5.3 Discrete Cumulative Distribution Function

Definition, Notation, Interpretation

Properties

Connection with the probability mass function (summation/differencing)

5.4 Bernoulli Distribution

5.5 Binomial Distribution

Definition, experimental context, interpretation

Mass function Limiting behaviour as $n \to \infty$, $\theta \to 0$ with $n\theta = \lambda$ constant

5.6 Poisson Distribution

Definition, experimental context, interpretation

Mass function

Connection to the Poisson Process

5.7 Geometric Distribution

Mass function and CDF

5.8 Negative Binomial Distribution

Definition, experimental context, interpretation

Mass function

Connection to Geometric distribution

5.9 Hypergeometric Distribution

Definition, experimental context, interpretation

Mass function

Connection to Binomial distribution

5.10 Probability Generating Functions

Definition

Uses: calculations for sums of independent random variables.

Formulae for PGFs of standard distributions (eg. Geometric, Binomial, Poisson)

CHAPTER 6: Continuous Random Variables and Distributions

6.1 Continuous Random Variables

General definition

Continuous probability specifications as the limit of discrete specifications

6.2 Continuous Cumulative Distribution Function

Definition, Notation, Interpretation

Properties

6.3 Probability Density Function

Definition, Notation, Interpretation

Properties; Expectation and Variance.

Connection with the continuous CDF function (integration/differentiation)

6.4 Continuous Uniform Distribution

6.5 Exponential Distribution

Definition, experimental context, interpretation

PDF and CDF

Connection to Poisson and Poisson Process

Connection to Uniform

6.6 Gamma Distribution

Definition, interpretation

The GAMMA function and properties

PDF

Special case: Chi-squared distribution ($\alpha = n/2, \beta = 1/2$) χ_n^2

Connection to Exponential

Connection to Normal

6.7 Normal Distribution

Definition, experimental context, interpretation

PDF in standard and non-standard cases

Linear transformations

CHAPTER 7: Transformations

Transformations of random variables (Y = g(X))

General transformation technique

Transformation Theorem for q 1-1

CHAPTER 8: Expectation

Further study of expectations of a discrete/continuous random variable

Expectations for general functions of random variables

Properties of Expectations

Linearity of Expectations

Probability and Moment Generating Functions as Expectations

Link between PGF and MGF

Calculations of PGF/MGF for standard distributions

Key results and uses of PGFs/MGFs

CHAPTER 9: Joint Distributions

General joint discrete/continuous distributions

Discrete joint/marginal/conditional mass functions

Continuous joint/marginal/conditional density functions

Independence for random variables

Conditional Expectations

Bivariate Expectations

The Law of Iterated Expectations

Covariance/Correlation

The Convolution Formula

Expectations (and other calculation techniques) for Sums of Random Variables

The Central Limit Theorem