THE NORMAL DISTRIBUTION

The Normal or Gaussian distribution is the most commonly used distribution in statistics, and is a model for random variables/obervations taking values on the whole of \mathbb{R} . The functional form of the Normal pdf is constructed from the non-negative, integrable function $f(x) = \exp\{-x^2\}$, but it has deeper origins in empirical data analysis, and can be derived as a limiting pdf.

First, we compute the integral of the function f(x) Suppose that, say,

$$\int_{-\infty}^{\infty} \exp\left\{-x^2\right\} \, dx = c$$

(we know by inspection that f is integrable, and c > 0). Then

$$c = \int_{-\infty}^{\infty} \exp\left\{-x^2\right\} dx$$

$$= \frac{1}{c} \int_{-\infty}^{\infty} c \exp\left\{-x^2\right\} dx$$

$$= \frac{1}{c} \int_{-\infty}^{\infty} \left\{ \int_{-\infty}^{\infty} \exp\left\{-y^2\right\} dy \right\} \exp\left\{-x^2\right\} dx$$

$$= \frac{1}{c} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left\{-\left(x^2 + y^2\right)\right\} dy dx$$

Now, we can make a transformation to polar coordinates in this double integral, that is, set

$$x = r \cos \theta$$
 $y = r \sin \theta$

for which the Jacobian or "change of variables" term is the determinant

$$\left| \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{bmatrix} \right| = \left| \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix} \right| = r \cos^2 \theta + r \sin^2 \theta = r$$

so that the integral above becomes

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left\{-\left(x^2 + y^2\right)\right\} dy dx = \int_{0}^{\infty} \int_{-\pi}^{\pi} \exp\left\{-\left(r^2 \cos^2 \theta + r^2 \sin^2 \theta\right)\right\} r d\theta dr$$

$$= \int_{0}^{\infty} \int_{-\pi}^{\pi} \exp\left\{-r^2\right\} r d\theta dr$$

$$= \left\{\int_{0}^{\infty} \exp\left\{-r^2\right\} r dr\right\} \left\{\int_{-\pi}^{\pi} d\theta\right\}$$

$$= \left\{\left[-\frac{1}{2} \exp\left\{-r^2\right\}\right]_{0}^{\infty}\right\} \left\{2\pi\right\}$$

$$= \pi$$

and hence we deduce that

$$c = \frac{\pi}{c}$$
 so that $c = \sqrt{\pi}$

Hence we conclude that the specification

$$f_X(x) = rac{1}{c} \exp\left\{-x^2
ight\} = \sqrt{rac{1}{\pi}} \exp\left\{-x^2
ight\} \qquad x \in \mathbb{R}$$

is a valid pdf. Note also from the above that, using another change of variables in the integral, we have that for $\lambda > 0$

$$\int_{-\infty}^{\infty} \exp\left\{-\lambda x^2\right\} \ dx = \sqrt{\frac{\pi}{\lambda}}$$

and further, for any constant μ

$$\int_{-\infty}^{\infty} \exp\left\{-\lambda(x-\mu)^2\right\} dx = \sqrt{\frac{\pi}{\lambda}}$$

The standard Normal pdf is obtained in this formulation when $\lambda = 1/2$ and $\mu = 0$, that is, for random variable X

$$f_X(x) = \sqrt{rac{1}{2\pi}} \exp\left\{-rac{1}{2}x^2
ight\}$$

The general Normal pdf is obtained by a *location/scale* transformation of X where we set random variable $Y = \mu + \sigma X$ for $\sigma > 0$, so that

$$F_Y(y) = P[Y \le y] = P[\mu + \sigma X \le y] = P\left[X \le \frac{y - \mu}{\sigma}\right] = F_X\left(\frac{y - \mu}{\sigma}\right)$$

from which we obtain on differentiation on both sides

$$f_Y(y) = rac{1}{\sigma} f_X\left(rac{y-\mu}{\sigma}
ight) = \sqrt{rac{1}{2\pi\sigma^2}} \exp\left\{-rac{1}{2}\left(rac{y-\mu}{\sigma}
ight)^2
ight\}$$

Note that the pdf is symmetric about μ .

The expectation of Y is computed as follows:

$$\mathrm{E}_{f_{Y}}\left[Y\right] = \int_{-\infty}^{\infty} y \sqrt{\frac{1}{2\pi\sigma^{2}}} \exp\left\{-\frac{1}{2} \left(\frac{y-\mu}{\sigma}\right)^{2}\right\} \, dy$$

which, by transforming to $t=(y-\mu)/\sigma$ in the integral becomes

$$\begin{split} \mathbf{E}_{f_Y}\left[Y\right] &= \int_{-\infty}^{\infty} (\mu + \sigma t) \sqrt{\frac{1}{2\pi}} \exp\left\{-\frac{1}{2}t^2\right\} \, dt \\ &= \mu \int_{-\infty}^{\infty} \exp\left\{-\frac{1}{2}t^2\right\} \, dt + \sigma \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} t \exp\left\{-\frac{1}{2}t^2\right\} \, dt \\ &= \mu + \sigma \sqrt{\frac{1}{2\pi}} \left[-\exp\left\{-\frac{1}{2}t^2\right\}\right]_{-\infty}^{\infty} \\ &= \mu \end{split}$$

This result is intuitively reasonable; the pdf is symmetric about μ , and the expectation of a random variable is the "centre of probability".