THE CENTRAL LIMIT THEOREM

THEOREM

Suppose $X_1, ..., X_n$ are i.i.d. random variables with mgf M_X , with

$$\mathbb{E}_{f_X}[X_i] = \mu \quad \operatorname{Var}_{f_X}[X_i] = \sigma^2$$

Let the random variable Z_n be defined by

$$Z_n = rac{\displaystyle\sum_{i=1}^n}{\sqrt{n\sigma^2}}$$

and let Z_n have $\operatorname{mgf} M_{Z_n}$. Then, as $n \longrightarrow \infty$,

$$M_{Z_n}(t) \longrightarrow \exp\left\{rac{t^2}{2}
ight\}$$

irrespective of the form of M_X .

PROOF:

First, let $Y_i = (X_i - \mu)/\sigma$ for i = 1, ..., n. Then $Y_1, ..., Y_n$ are i.i.d. with mgf M_Y say, and by the elementary properties of expectation, $\mathrm{E}_{f_Y}[Y_i] = 0$, $\mathrm{Var}_{f_Y}[Y_i] = 1$ for each i. Using the power series expansion result for mgfs, we have that

$$M_Y(t) = 1 + tE_{f_Y}[Y] + \frac{t^2}{2!}E_{f_Y}[Y^2] + \frac{t^3}{3!}E_{f_Y}[Y^3] + \dots$$
$$= 1 + \frac{t^2}{2!} + \frac{t^3}{3!}E_{f_Y}[Y^3] + \dots$$

Now, the random variable \mathbb{Z}_n can be rewritten

$$Z_n = rac{1}{\sqrt{n}} \sum_{i=1}^n Y_i$$

and thus, again by a standard mgf result, as $Y_1, ..., Y_n$ are independent, we have that

$$M_{Z_n}(t) = \prod_{i=1}^n \left\{ M_Y(t/\sqrt{n}) \right\} = \left\{ 1 + \frac{t^2}{2n} + \frac{t^3}{6n^{3/2}} E_{f_Y}[Y^3] + \ldots \right\}^n$$

Taking logs, and using the expansion $\ln(1+s) = s - s^2/2 + s^3/3 - \dots$ we have that

$$\ln M_{Z_n}(t) = n \left[\left(\frac{t^2}{2n} + \frac{t^3}{6n^{3/2}} E_{f_Y}[Y^3] + \ldots \right) - \frac{1}{2} \left(\frac{t^2}{2n} + \frac{t^3}{6n^{3/2}} E_{f_Y}[Y^3] + \ldots \right)^2 + \ldots \right]$$

Thus, as $n \longrightarrow \infty$, only the very first term is non-zero, and

$$\ln\! M_{Z_n}(t) \longrightarrow rac{t^2}{2} \; ext{ so that } \; M_{Z_n}(t) \longrightarrow \exp\left\{rac{t^2}{2}
ight\}$$

THIS MATERIAL NOT EXAMINABLE