M1S: EXERCISES 9

TRANSFORMATIONS OF RANDOM VARIABLES

1. Suppose that X is a continuous random variable with range $\mathbb{X} = [0, 1]$, and probability density function f_X specified by

$$f_X(x) = 2(1-x) \qquad 0 \le x \le 1$$

and zero otherwise. Find the probability distributions of random variables Y_1 , Y_2 and Y_3 defined respectively by

(i)
$$Y_1 = 2X - 1$$
 (ii) $Y_2 = 1 - 2X$ (iii) $Y_3 = X^2$

that is, in each case, find the range and the density function.

2. The annual profit (in millions of pounds) of a manufacturing company is a function of product demand. If X is the continuous random variable corresponding to the demand in a given year, then the annual profit is also a continuous random variable, Y say, where

$$Y = 2(1 - e^{-2X})$$

If X has an Exponential distribution with parameter $\lambda = 6$, find the expected annual profit.

3. The continuous random variable X has a Uniform distribution on the interval [-1,1]. Find the probability density function of random variables

(a)
$$Y = |X|$$
 (b) $Z = X^2$

- 4. If X is any continuous random variable with distribution function F_X , show that
- (i) Random variable $U = F_X(X)$ has a Uniform distribution on [0, 1];
- (ii) Random variable $Y = -\log F_X(X)$ has an exponential distribution
- 5. If X is a continuous random variable on range $\mathbb{X} \equiv \mathbb{R}^+$ with probability density function specified by

$$f_X(x) = \alpha \beta x^{\alpha - 1} e^{-\beta x^{\alpha}} \quad x > 0$$

and zero otherwise, for parameters $\alpha, \beta > 0$, then X has a Weibull distribution. Show that $Y = X^{\alpha}$ has an exponential distribution.

6. If X has a Geometric distribution with parameter θ , show using the moment generating function of X or otherwise that

$$\mathrm{E}_{f_X}[X] = \frac{1}{\theta} \quad \mathrm{Var}_{f_X}[X] = \frac{1-\theta}{\theta^2}$$

Hence deduce the forms of the expectation and variance of a negative binomial distribution with parameters n and θ .

7. Let X be a discrete random variable with range $\mathbb{X} = \{0, 1, 2,\}$. Show that

$$\mathrm{E}_{f_X}[X] = \sum_{x=0}^{\infty} \mathrm{P}[\ X > x\]$$

8. Let X be a continuous random variable with range X and probability density function f_X . Let g be a real-valued function whose range includes X, and let random variable Y be defined by Y = g(X). Prove that

$$\mathrm{E}_{f_Y}[Y] = \mathrm{E}_{f_X}[g(X)]$$

provided that both expectations exist.

- 9. Suppose that random variable X has a standard normal distribution.
- (i) Find the cumulative distribution function (cdf) of $Y = X^2$ in terms of the standard normal cdf Φ .

Hint: for the cdf of Y, we have

$$\mathbf{P}\left[\ Y \leq y \ \right] \quad \equiv \mathbf{P}\left[\ X^2 \leq y \ \right] \equiv \mathbf{P}\left[\ |X| \leq \sqrt{y} \ \right]$$

- (ii) Find the probability density function of Y, f_Y .
- (iii) Identify (by name) the probability distribution of Y.
- 10. Suppose now that X_1 and X_2 are independent and identically distributed random variables, each having a standard normal distribution. Let random variable V be defined by

$$V = X_1^2 + X_2^2$$

Find the pdf of V.