M1S: EXERCISE SHEET 2

ELEMENTARY PROBABILITY

EXERCISES

1. A person selected from a population and subjected to screening-for-a particular-disease is either a sufferer (S) or not (S'). The screening will either result in a positive test (T), or a negative (T'). If the result of the test is used to classify the person, write down the event "person misclassified".

Suppose now that an X-ray is also taken and either gives a positive (X), or a negative (X') indication, and also a doctor carries out an examination resulting in a positive (D), or negative (D') assessment. If a person is classified as a sufferer if and only if the doctor and at least one of the tests points in this direction, represent the event "correct classification made".

2. Given two events $E, F \subseteq \Omega$, prove that the probability of one and only one of them occurring is

$$P(E) + P(F) - 2P(E \cap F)$$
.

3. Consider the following statements, which are claimed to be true for events E_1 , E_2 in a sample space Ω :

$$(a) \qquad \mathbf{P}(E_1) = 0$$

$$\implies P(E_1 \cup E_2) = 0$$

(b)
$$P(E_1) = P(E_2')$$

$$\implies E_1' = E_2$$

(c)
$$E_1 \subseteq E_2$$
 and $P(E_1) = P(E_2') \implies P(E_1) \le 1/2$

$$\implies P(E_1) \leq 1/2$$

(d)
$$P(E_1') = x_1, P(E_2') = x_2 \implies P(E_1 \cup E_2) \ge 1 - x_1 - x_2$$

$$\implies P(E_1 \cup E_2) \ge 1 - x_1 - x_2$$

In each case, either prove that the statement is true for all Ω, E_1, E_2 , or provide a specific counter-example to show that there exists Ω, E_1, E_2 for which it is false

4. Given two events $E, F \subseteq \Omega$, prove that

(a)
$$P(E' \cap F) = P(F) - P(E \cap F)$$

(b)
$$P(E \cup F) = P(E) + P(F) - P(E \cap F)$$

(c)
$$E \subseteq F \Longrightarrow P(E) \le P(F)$$

(d)
$$P(E \cap F) > P(E) + P(F) - 1$$

[(d) is known as Bonferroni's Inequality.]

5. Suppose that E and F are events such that P(E) = x, P(F) = y and $P(E \cap F) = z$. Express the following terms of x, y and z:

$$(a) \qquad P(E' \cup F')$$

(b)
$$P(E' \cap F)$$

(c)
$$P(E' \cup F)$$

(d)
$$P(E' \cap F')$$
.

6. Show that the first probability axiom can be relaxed to:

$$(I)^* : P(E) \ge 0 \text{ for all } E \subseteq \Omega,$$

that is, given that $(I)^*$, (II) and (III) hold, prove that $P(E) \leq 1$ for all $E \subseteq \Omega$.

- 7. Use induction to prove that, for any events $E_1, E_2, ..., E_n$ in Ω :
 - (a) $P(E_1 \cup E_2 \cup ... \cup E_n) \leq P(E_1) + ... + P(E_n)$ (Boole's Inequality)

(b)
$$P(E_1 \cup E_2 \cup ... \cup E_n) = \sum_i P(E_i) - \sum_i \sum_j P(E_i \cap E_j) + \sum_i \sum_j \sum_k P(E_i \cap E_j \cap E_k) - ... + (-1)^{n-1} P(E_1 \cap E_2 \cap ... \cap E_n)$$

In (b), summations are over distinct sets of subscripts, each counted once only. For example, if n = 3, the result would correspond to

$$P(E_1 \cup E_2 \cup E_3) = P(E_1) + P(E_2) + P(E_3) - P(E_1 \cap E_2) - P(E_1 \cap E_3) - P(E_2 \cap E_3) + P(E_1 \cap E_2 \cap E_3).$$