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5.6 Linear Regression Analysis
Suppose that we have n measurements of two variables X and Y, that is, a sample of pairs of observations

{(xl,yl) = 1,...,n}

and it is believed that there is a linear relationship between X and Y. Suppose that we regard X as a controlled
variable, that is, we can control the values of X at which Y is measured. Our aim is to try and predict Y for a
given value of X, and thus we have to build a probability model for ¥ conditional on X = z that incorporates
the linear dependence.

5.6.1 Terminology
Y is the response or dependent variable

X is the covariate or independent variable

A simple relationship between Y and X is the linear regression model, where
EY|X =z] = a + 8z,

that is, conditional on X = =z, the expected or “predicted” value of Y is given by a + Bz, where a and 8
are unknown parameters; in other words, we model the relationship between Y and X as a straight line with
intercept a and slope §.

For data {(z;,y;) : ¢ = 1, ...,n}, the objective is to estimate the unknown parameters a and 5. A simple estimation
technique, is least-squares estimation.

5.6.2 Least-Squares Estimation

Suppose that a sample, {(z;,y;) : ¢ = 1,...,n}, is believed to follow a linear regression model, E[Y|X = z] = a+5z.
For fixed values of a and 3, let yZKP) denote the expected value of Y conditional on X = z;, that is

P
yl( ) = o+ Bz;
Now define error terms e;, i = 1,...,n by

(P) =Y

i =Yi— —a— Bz

that is, e; is the vertical discrepancy between the observed and expected values of Y.

The objective in least-squares estimation is find a “line of best fit”, and this is achieved by inspecting the squares
of the error terms e;, and choosing a and 8 such that the sum of the squared errors is minimized; we aim to
find the straight line model for which the total error is smallest.

Let S(a, 8) denote the total error in fitting a linear regression model with parameters a and 8. Then

S@B) = Y& =3 i-v"? = Y (yi—a-Br)?
i=1 i=1

=1

To calculate the least-squares estimates, we have to minimize S(a, ) as a function of @ and 8. This can be
achieved in the usual way by taking partial derivatives with respect to the two parameters, and equating the
partial derivatives to zero simultaneously.

1) —{Saﬂ :_22 i —o—Pr;) =0 @ 3 {Saﬂ Z—QZ% yi —a—fz;) =0

Solving (1), we obtain an equation for the least-squares estimates & and B
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Solving (2) in the same way, and combining the last two equations, and solving for B gives

n R n n n n
Z-’L'iyi -8 Zﬂcf 712%% - Z%Zyz
i=1 i=1 i=1__i=1

B — =1
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Thus the least-squares estimates of a and 8 are given by

A A Sy, — 8.5,
a=1iy—pzx = ———
g—8 B nSss — (5,17

where

n n n
i=1 i=1 i=1

=1
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Therefore it is possible to produce estimates of parameters in a linear regression model using least-squares, without
any specific reference to probability models. In fact, the least-squares approach is very closely related to maximum

likelihood estimation for a specific probability model.

The correlation coefficient, r, measures the degree of association between X and Y variables and is given by

NS4y — Sz,
/(1S = S2)(nSy, - 53)

r =

and therefore is quite closely related to [3

5.6.3 Relationship between least-squares and maximum likelihood

Suppose that X and Y follow a linear regression model,
EY|X =z] = a + 8z,
and recall that the error terms e; were defined

e =yi — o — Bz,

Now, e; is the vertical discrepancy between observed and expected behaviour, and thus e; could be interpreted
as the observed version of a random variable, say €;, which represents the random uncertainty involved in
measuring Y for a given X. A plausible probability model might therefore be that the random variables ¢,

i =1, ...n, were independent and identically distributed, and

€5 ~ N(0702)7

for some error variance parameter o2

. Implicit in this assumption is that the distribution of the random error

in measuring Y does not depend on the value of X at which the measurement is made. This distributional

assumption about the error terms leads to a probability model for the variable Y. As we can write

Y=a+8X +e¢

where € ~ N(0,0?), then given on X = z;, we have the conditional distribution Y; as

Y;|X = z; ~ N(a + Bz;,0%),
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where random variables Y; and Y; are independent (as ¢; and ¢; are independent). On the basis of this probability
model, we can derive a likelihood function, and hence derive maximum likelihood estimates. For example, we
have the likelihood L(8) = L(a, 8,0?%) defined as the product of the n conditional density terms derived as the
conditional density of the observed y; given z;,

n n

n/2 n
L®) = [[fwi;z:,6) = H—,;T?%P{—%(yi —a- 5%‘)2} = (27302) exp {_%Z(yi —a- /3$i)2}

i=1 i=1

The maximum likelihood estimates of o and 8, and error variance o2, are obtained as the values at which

L(a, B,0?) is maximized. But, L(a, 3,02) is maximized when the term in the exponent, that is,
n
> (i — a— Bz;)?

=1

is minimized. But this is precisely the least-squares criterion described above, and thus the m.l.e s of « and §
assuming a Normal error model are exactly equivalent to the least-squares estimates.

5.6.4 Estimates of Error Variance and Residuals

In addition to the estimates of @ and 3, we can also obtain the maximum likelihood estimate of o2,

"o 1 4
o= z;(yi—a—5$i)2 =5
i=

Often, a corrected estimate, s2, of the error variance is used, defined by
| R | R
s? = > i—a—pz)? = > (yi — i)

5 n—2 4
i=1 =1

where g; = & + B% is the fitted value of Y at X = z;. Note also that, having fitted a model with parameters
& and 3, we can calculate the error in fit at each data point, or residual, denoted e;,7 = 1,...,n, where ¢; =

Yi — ¥ = yi — & — Bz

5.6.5 Prediction for a new covariate value

Suppose that, having fitted a model, and obtained estimates & and B using maximum likelihood or least-squares,
we want to predict the Y value for a new value z* of covariate X. By considering the nature of the regression
model, we obtain the predicted value y* as

5.6.6 Standard Errors of Estimators and t-statistics

We need to be able to understand how the estimators corresponding to & and B behave, and by how much the
estimate is likely to vary. This can be partially achieved by inspection of the standard errors of estimates, that
is, the square-root of the variance in the sampling distribution of the corresponding estimator. It can be shown

that
~ Sww A n
S.e.ltx) =8 R E——— S.€. =8 R E———
(@) nSue — {8} () V 1nSee — {Se}>

where s is the square-root of the corrected estimate of the error variance. It is good statistical practice to report
standard errors whenever estimates are reported. The standard error of a parameter also allows a test of the
hypothesis “parameter is equal to zero”. The test is carried out by calculation of the t-statistic, that is, the
ratio of a parameter estimate to its standard error. The t-statistic must be compared with the 0.025 and 0.975
percentiles of a Student-¢ distribution with n — 2 degrees of freedom as described below.
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5.6.7 Hypothesis Tests and Confidence Intervals for Parameters

We may carry out hypothesis tests for the parameters in a linear regression model; as usual we need to be able
to understand the sampling distributions of the corresponding estimators. In the linear regression model, the
sampling distributions of the estimators of @ and 8 have Student-t distributions with n — 2 degrees of freedom,
hence we use the test statistics

a-c a-c 3 —c 3 —c

Sea s.e.(d) s | n o sed
nSez — {52} nSss — {Sa}’

to test the null hypothesis that the parameter is equal to ¢. Typically, we use a test at the 5 % significance level,
so the appropriate critical values are the 0.025 and 0.975 quantiles of a St(n — 2) distribution.

It is also useful to report, for each parameter, a confidence interval in which we think the true parameter value
(that we have estimated by & or §) lies with high probability. It can be shown that the 95% confidence intervals
are given by

Sz A n
a: &+ t, 2(0975) s,/ ———— : + ¢,2(0975)s , | —————
2(0.975) nSn — (5.1 BB 2( ) ‘/nsm—{sw}Q

where t,,_2(0.975) is the 97.5th percentile of a Student-¢ distribution with n — 2 degrees of freedom.

The confidence intervals are useful because they provide an alternative method for carrying out hypothesis tests.
For example, if we want to test the hypothesis that a = ¢, say, we simply note whether the 95% confidence
interval contains ¢. If it does, the hypothesis can be accepted; if not the hypothesis should be rejected, as the
confidence interval provides evidence that a # c.

We may carry out a hypothesis test to carry out whether there is significant correlation between two variables.
We denote by p the true correlation; then to test the hypothesis

HO Lp= 0
H1 p 7é 0
we use the test statistic
. n—2
br=m1 2

which we compare with the null distribution which is Student-¢ with n—2 degrees of freedom. If |¢,| > t,-2(0.975),
then we can conclude that the true correlation p is significantly different from zero.

5.6.8 Multiple Linear Regression

In everything that is described above, we have used a model in which we predicted a response Y from a single
covariate X. This simple model can be extended to the case where Y is modelled as a function of p covariates
X1, ..., Xp, that is, we have the conditional expectation of Y given by

E[Yle =71, ...,Xp = il,'p] =+ 61.’1}1 —+ .+ Bpil!p,
so that the observation model is given by
Yile =i, ., Xp = Tip ~ N(a+ Sizi + ... + ﬂp.’l,'ip,0'2).
Again, we can use maximum likelihood estimation to obtain estimates of the parameters in the model, that is,
parameter vector (@, 81, ..., 8p,02), but the details are slightly more complex, as we have to solve p + 1 equations

simultaneously. The procedure is simplified if we write the parameters as a single vector, and perform matrix
manipulation and calculus to obtain the estimates.
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5.6.9 Worked Example

The following data are believed to follow a linear regression model;

z 054 203 515 596 6.25 817 11.08 1244 14.04 1434 18.71 19.90
y 11.37 11.21 11.61 8.26 14.08 16.25 11.00 14.94 16.91 15.78 21.26 20.25

We want to calculate estimates of a and 8 from these data. First, we calculate the summary statistics;

n n n n
Se=) w;=11863 S, => y; =172.92 Spz=» 27 =15986 Sy = > miy; = 1930.9

i=1 i=1 i=1 i=1
with n = 12 which leads to parameter estimates

NSy — 858, _ 12 x 1930.9 — 118.63 x 172.92

- = 0.5201 A = §— BT = 14.410—0.5201 x 9.8842 = 9.269
nSes — {Sa}’ 12 x 1598.6 — (118.63)2 & =g-[bs

B =

This fit leads to the following fitted values and residuals;

054 2.03 5.15 596 6.25 8.17 11.08 12.44 14.04 1434 18.71 19.90
11.37 11.21 11.61 8.26 14.08 16.25 11.00 14.94 1691 15.78 21.26 20.25
9.55 10.33 11.95 1237 12,52 13.52 15.03 15.73 16.57 16.73 19.00 19.62
1.82 088 -034 —-411 156 273 —-4.03 -—-0.8 034 —-0.95 226 0.63

o e 8

The corrected variance estimate, s2, is given by

1
s = D yi—a—pm)’ = Si-gi)? =5438 =  s=2332

The standard errors for the two parameters are given by

s.e.(@) =s % =1.304 se.(B)=s /% =0.113
nSzz — {Sz} nSee — {Ss}

The t-statistics for the two parameters are given by

~

é 9.269 8 0.520
ty = = % 7109 tg = = 27 4.604.
> se(a) 1304 P se(B) 0113

The 0.975 percentile of a Student-f distribution with n — 2 = 10 degrees of freedom is found from tables to
be 2.228. Both t-statistics are more extreme than this critical value, and hence it can be concluded that both
parameters are significantly different from zero.

To calculate the confidence intervals for the two parameters. we need to use the 0.975 percentile of a St(10)
distribution. From above, we have that St(10)(0.975) = 2.228, and so the confidence intervals are given by

a i & % t,_5(0.975) s _Sas . 9969 £2228x 1304 = (6.364 : 12.174)

nSue — {Sa}°

B : Bk tn5(0975)s, [— " = 05201 £2.228x0.113 = (0.268:0.772)
nSze — {Sz}

so that, informally, we are 95% certain that the true value of « lies in the interval (6.724 : 12.174), and that the
true value of 8 lies in the interval (0.268 : 0.772). This amounts to evidence that, for example, a # 0 (as the
confidence interval for a does not contain 0), and evidence that 8 # 1 (as the confidence interval for 8 does not
contain 1).
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5.7 Model Validation

Techniques used for estimation and hypothesis testing allow specific and quantitative questions about the parame-
ters in a probability model to be posed and resolved on the basis of a collection of sample data z1, ..., z,. However,
the question as to the validity of the assumed probability model (for example, Binomial, Poisson, Exponential,
Normal etc.) has yet to be addressed.

5.7.1 Probability Plots

The probability plotting technique involves comparing predicted and observed behaviour by comparing quantiles
of the proposed probability distribution with sample quantiles. Suppose that a sample of data of size n are to be
modelled using a proposed probability model with cdf Fx which possibly depends on unknown parameter(s) 6.
The sample data are first sorted into ascending order, and then the ith datum, z;, corresponds to the 100i/(n+1)th
quantile of the sample. Now, the equivalent hypothetical quantile of the distribution, ¢; is found as the solution of

i

Fx (@) = ]

1=1,..,n.

If the model encapsulated in Fx is an acceptable model for the sample data, then for large n, z; = ¢;, so a plot
of {(g;,z;) : 4 =1,...,n} should be a straight line through the origin with slope 1. Hence the validity of Fx as a
model for the sample data can be assessed through such a plot.

EXAMPLE For the Ezponential(1) model, Fx is given by
Fx(z)y=1—-e* x>0

so the probability plot consists of examining {(g;, ;) : ¢ = 1, ...,n} where

i i
l—e %= ;=—log{l—
e n+1:>ql og{ n+1}

EXAMPLE For the N(0,1) model, Fx = ® is only available numerically (for example via statistical tables).
Here the probability plot consists of examining {(g;, ;) : ¢ = 1,...,n} where

@@”:_i_:¢%:¢4( i)

n+1 n+1

EXAMPLE For the Exponential(A) model, we plot {(g;,z;) : ¢ = 1,...,n} where

7 1 7
Fo () = 1 — e~ M — , oed1 .
X(qz) € n 1:)(]1 )\Og{ n 1}

Hence, if we define g by

i
*=_logq1—
4 Og{ n+1}

then if the model is correct, a plot of {(g},=;) : i = 1,...,n} should be approximately a straight line through the
origin with slope 1/A; hence A can be estimated from this plot by using linear regression.

EXAMPLE For the N(u,0?) model, is again only available numerically (for example via statistical tables).
Here the probability plot consists of examining {(g;, ;) : ¢ = 1,...,n} where

P — 7 _ 7
Fx(qz')zé(ql M):n+1:>qi:,u+a<1>1( )

o n+1
i
* — o1
@ (n+1)

then if the model is correct, a plot of {(¢},z;) : ¢ = 1,...,n} should be approximately a straight line with intercept
1 and slope o; hence u, o can again be estimated from this plot by using linear regression.

Hence, if we define g by
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5.7.2 The Chi-Squared Goodness-of-Fit Test

The problem of testing a hypothesis as to whether a data sample z1, ..., Z,, is well-modelled by a specfied probability
distribution can be approached from a “goodness-of-fit” perspective.

Suppose that the data are recorded as the number of observations, O;, say in a sample of size n that fall into each
of k categories or “bins”. Suppose that under the hypothesized model with mass/density function fx or cdf Fy,
the data follow a specific probability distribution specified by probabilities {p; : ¢ = 1,...,k}. These probabilities
can be calculated directly from fx or Fx, possibly after parameters in the model have been estimated using
maximum likelihood. Then, if the hypothesized model is correct, E; = np; observations would be expected to
fall into category i. An intuitively sensible measure of the goodness-of-fit of the data to the hypothesized
distribution is given by the chi-squared statistic

k 2
0; — E;
ey Ei)

=1

A formal hypothesis test of model adequacy can be carried out in the usual framework; here the chi-squared
statistic is the test statistic, and the null distribution (the distribution of the test statistic if the hypothesis is
TRUE) is approximately a chi-squared distribution with k¥ — d — 1 degrees of freedom, where d is the number
of parameters in fx or Fx that were estimated in order calculate the probabilities py, ..., Dg-

EXAMPLE : Testing the fit of a Poisson distribution

An early experiment into the properties of radicactive materials involved counting the number of alpha particles
emitted from a radioactive source in 2612 consecutive 7.5 second intervals. A total of 10126 particles were counted,
and the observed frequencies for each of the numbers of counts (per 7.5s) from 0 to 12 were recorded.

Count O; p; E; (0;-E)’/E;
0 57 0021 54 0.167
1 204 0.080 210 0.171
2 383 0.156 407 1.415
3 525 0.201 525 0.000
4 532 0.195 510 0.949
5 408 0.151 395 0.428
6 273 0.098 255 1.271
7 139 0.054 141 0.028
8 49 0026 68 5.309
9 27 0011 30 0.300
10 10 0.004 11 0.091
11 4 0.002 4 0.000
12 2 0.000 1 1.000
>12 0 0.001 1 1.000
Total 2612 1.000 2612 12.129

To test the hypothesis that the data follow a Poisson distribution, a chi-squared test can be performed. First,
we estimate Poisson parameter A by its m..e., which is A=z = 10126/2612 = 3.877. Secondly, we calculate
probabilities p; using the Poisson formula. Thirdly, we calculate the theoretical (expected) frequencies E; = np;
for each category. Finally, we calculate the x? statistic as the sum of the (standardized) squared differences
between observed and expected frequencies.

In this case, x> = 12.129. To complete the test we find that the 95th percentile of a Chi-squared distribution
with k — 1 — 1 = 12 degrees of freedom is 21.03. This implies that the x? statistic would only be surprising at
a significance level of 0.05 if it was larger than 21.03. Here, as x® = 12.129, and therefore not surprising. Hence
there is no evidence to indicate that the data are not from a Poisson distribution.

Clearly, the categorization is arbitrary, and several of the categories in example 1 could be combined. As a general
rule, the categories should be chosen so that there is at least five observed counts in each.
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EXAMPLE : Contingency Tables

One common use of the Chi-Squared Goodness-of-Fit test is in the context of contingency tables; a sample of
data of size n are classified according to D factors, with each factor having kg4 levels or categories, for d =1, ..., D.
When the classification is complete, the result can be represented by a D-way table of k1 X ko X ... X kp “cells”,
with each cell containing a fraction of the original data. For example, if D = 2, the table consists of k; rows and
k2 columns, and the number data in cell (7,7) is denoted n;; for i =1, ...,k and j =1, ..., ko, where

k1 ko

DD mi=n

i=1 j=1

It is often of interest to test whether row classification is independent of column classification, as this would
indicate independence between row and column factors. This test is readily carried out using a Chi-Squared
Goodness of Fit test; it is easy to show that, if the independence model is correct, the expected cell frequencies
E;; can be calculated as

Eij :% lzl,...,kl, J:].,...,kg
where n;. is the fotal of cell counts in row i and n; is the total of cell counts in column j, and that, under
independence, the x? test statistic has an approximate chi-squared distribution with (k; — 1)(k2 — 1) degrees of

freedom.

Summary

If a given hypothesis is true, it can be shown that the chi-squared statistic x? for a sample of data has a particular
Chi-squared distribution. If x? takes a value that is surprising or unlikely under that probability distribution
(for example if its value lies in the extreme right-hand tail and is larger, say, than the 95th percentile of the
distribution) it is very likely that the hypothesis is false and should be be rejected.

In general, to test a hypothesis, consider a statistic calculated from the sample data. Derive mathematically
the probability distribution of the statistic when the hypothesis is true, and compare the actual value of the
statistic with the hypothetical probability distribution. Ask the question “Is the value a likely observation from
this probability distribution ?”. If the answer is “No”, then reject the hypothesis.

5.7.3 Model Validation in Linear Regression

The adequacy of the fit of a linear regression model can be assessed on a global (overall) level using the R? (R-
squared) statistic, which is calculated as the square of the correlation coefficient, r; R? quantifies the proportion
of the total variation observed in the data that is explained by the regression (i.e. systematic) component of the
model, as compared to the random variation. If the covariate X is a good predictor, then the majority of the
total variation Y will be explained by variation in X, and so R? will be near 1.

The adequacy of the fit of a linear regression model can be assessed on a local (point-by-point) level by inspection
qf the residuals; recall that, if §; = & + B% is the fitted value of Y at X = z; for parameter estimates & and
B, the residual e; is the error in fit at each data point, so e; = y; —¥; = v; — & — Bxl If the regression model is
adequate, then because of the assumptions underlying the model, the residuals e;,i = 1, ...,n should form an i.i.d.
sample from a N(0,02) distribution, whose magnitude should not vary systematically with z;, y; or the fitted
value ¢;; this could be checked using simple scatterplots. The normality of the residuals can be checked using, for
example, a probability plot. Clearly, in practice, the random variation in the model, as encapsulated in variance
o2, is unknown, but can be estimated using the corrected error variance estimate

1 < 5 1 <
2 _ . N2 — . 52
= ;Zl(yz &= fzi)” = ——5 ;Zl(yz 9i)"

Using this estimate, it is possible to compute standardized residuals

s
which can be shown to follow a Student-¢ distribution with n — 2 degrees of freedom. The advantage of using
standardized residuals is that they have, approximately, variance equal to 1.



