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5.5 Hypothesis Testing

Given a sample 1, ..., Z,, from a probability model f (x #) depending on parameter §, we can produce an estimate
6 of 8, and in some circumstances understand how 6 varies for repeated samples. Now we might want to test,
say, whether or not there is evidence from the sample that true (but unobserved) value of # is not equal to a
specified value. To do this, we use estimate of 8, and the corresponding estimator and its sampling distribution,
to quantify this evidence.

In particular, we concentrate on data samples that we can presume to have a normal distribution, and utilize
the Theorem from the previous section. We will look at two situations, namely one sample and two sample
experiments.

ONE SAMPLE : Random variables X1,y X ~ N(u,0?%) Possible Models p=c¢;
sample observations L1, Tp o =Cs

TWO SAMPLE :  Random variables X1,y Xn ~ N(ux,0%) Possible Models — px = py
sample one observations L1, Tp Ox =0y
Random variables Yi,.., Yo ~ N(uy,o0%)

sample two observations  y1,...Yn

5.5.1 Hypothesis Testing for Normal data I - The Z-test

Recall that, if X1,..., X, ~ N(u,0?) are the i.i.d. outcome random variables of n experimental trials, then
X ~ N (,0?/n) and nS?/o? ~ x2_,, with X and S? statistically independent.

Suppose we want to test the hypothesis that u = ¢, for some specified constant ¢, (where, for example, ¢ = 20.0)
is a plausible model; more specifically, we want to test

Hy :pu=c the NULL hypothesis
H :u#c the ALTERNATIVE hypothesis

[i.e. we want to test whether Hy is true, or whether H; is true]. Now, we know that, in the case of a Normal
sample, the distribution of the estimator X is Normal, and

) _
— U p—
(“ "n ) o/f
where Z is a random variable. Now, when we have observed the data sample, we can calculate Z, and therefore
we have a way of testing whether u = ¢ is a plausible model; we calculate Z from z1, ..., Z,, and then calculate

B N1

r—c
a/\/n’
If Hy is true, and g = ¢, then the observed z should be an observation from an N(0,1) distribution (as

Z ~ N(0,1)), that is, it should be near zero with high probability. In fact, z should lie between -1.96 and 1.96
with probability 1 — a = 0.95, say, as

Z =

P[-1.96 < Z < 1.96] = ®(1.96) — ®(—1.96) = 0.975 — 0.025 = 0.95.

If we observe z to be outside of this range, then there is evidence that Hy is not true.
Alternatively, we could calculate the probability p of observing a z value that is more extreme than the z we
did observe; this probability is given by

28(z) <0
p:{ 2(1z—<1>(z)) izo

If p is very small, say p < a = 0.05, then again. there is evidence that Hy is not true. In summary, we need to
assess whether z is a surprising observation from an N(0,1) distribution - if it is, then we can reject Hy.
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5.5.2 Hypothesis testing terminology

There are five crucial components to a hypothesis test, namely

TEST STATISTIC

NULL DISTRIBUTION
SIGNIFICANCE LEVEL, denoted o
P-VALUE, denoted p.

CRITICAL VALUE(S)

In the Normal example given above, we have that

z is the test statistic

The distribution of random variable Z if Hy is true is the null distribution

a = 0.05 is the significance level of the test (we could use a = 0.01 if we require a “stronger” test).
p is the p-value of the test statistic under the null distribution

The solution Cg of #(Cr) =1 — a/2 (Cr = 1.96 above) gives the critical values of the test £Cg.

EXAMPLE : A sample of size 10 has sample mean Z = 19.7. Suppose we want to test the hypothesis

HO LU= 20.0

under the assumption that the data follow a Normal distribution with ¢ = 1.0.

We have
19.7 - 20.0
z2= ———=-0.95
1/4/10

which lies between the critical values £1.96, and therefore we have no reason to reject Hy. Also, the p-value is
given by p = 28(—0.95) = 0.342, which is greater than a = 0.05, which confirms that we have no reason to reject
Hy.

5.5.3 Hypothesis Testing for Normal data IT - The T-test

In practice, we will often want to test hypotheses about ¢ when ¢ is unknown. We cannot perform the Z-test, as
this requires knowledge of o to calculate the z statistic.

We proceed as follows; recall that we know the sampling distributions of X and s2, and that the two estimators are
statistically independent. Now, from the properties of the Normal distribution, if we have independent random
variables Z ~ N(0,1) and Y ~ x2, then we know that random variable T' defined by

Z

VY/v

has a Student-¢ distribution with v degrees of freedom. Using this result, and recalling the sampling distributions
of X and s2, we see that

T =

X-up
r—__ ol _X-w
(n—1)s?/o>  8/V7D
(n—1)

and T has a Student-t distribution with n — 1 degrees of freedom, denoted St(n — 1). Thus we can repeat the
procedure used in the o known case, but use the sampling distribution of T rather than that of Z to assess
whether the test statistic is “surprising” or not. Specifically, we calculate
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po E-w)
s/v/n

and find the critical values for a a = 0.05 significance test by finding the ordinates corresponding to the 0.025
and 0.975 percentiles of a Student-¢ distribution, S#(n — 1) (rather than a N(0,1)) distribution.

EXAMPLE : A sample of size 10 has sample mean Z = 19.7. and s> = 0.782. Suppose we want to carry out a
test of the hypotheses

HO LU= 20.0

under the assumption that the data follow a Normal distribution with ¢ unknown.

We have test statistic ¢ given by

_197-200 _ o,
0.78/+/10

The upper critical value Cg is obtained by solving

F, _,(CRr) =0.975

where Fsy,_1) is the c.d.f. of a Student-¢ distribution with n — 1 degrees of freedom; here n = 10, so we can use
the statistical tables to find C'g = 2.262, and not that, as Student-£ distributions are symmetric the lower critical
value is —Cg. Thus t lies between the critical values, and therefore we have no reason to reject Hy. The p-value
is given by

| 2K, _,(®) t<0
- { 21=Fi,,(8) t20

so here, p = 2F;_,(—1.22) which we can find to give p = 0.253; this confirms that we have no reason to reject
H,.

5.5.4 Hypothesis Testing for Normal data IT - testing o.

The Z-test and T-test are both tests for the parameter u. Suppose that we wish to test a hypothesis about o, for
example

HO 10'226
H1 :027éc

We construct a test based on the estimate of variance, so. In particular, we saw from the Theorem on p.32 that
the random variable @, defined by
(n —1)s?

2
= — ~
Q 0_2 X’I’L—l

if the data have an N(u,o?) distribution. Hence if we define test statistic ¢ by

(n—1)s?
c

q:

then we can compare ¢ with the the critical values derived from a x2_; distribution; we look for the 0.025 and
0.975 quantiles - note that the Chi-squared distribution is not symmetric, so we need two distinct critical values.
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In the above example, to test
Hy :62=10
H :02#10

we compute test statistic
—1)s®  90.782
I Ut — 5.475
c 1.0

and compare with
CR1 = in_l (0.025) — CR1 =2.700
CR2 = in_l (0.975) — CR2 = 19.022

S0 ¢ is not a suprising observation from a x2_; distribution, and hence we cannot reject Hy.

5.5.5 Two sample tests

It is straightforward to extend the ideas from the previous sections to two sample situations where we wish to
compare the distributions underlying two data samples. Typically, we consider sample one, z1,...,Zy,, from a
N(ux,o%) distribution, and sample two, y1, .., Yny , independently from a N(uy,o?) distribution, and test the
equality of the parameters in the two models. Suppose that the sample mean and sample variance for samples
one and two are denoted (Z,s%) and (7, %) respectively.

First, consider testing the hypothesis
Hy :px=upy
Hi :px #py

when ox = oy = o is known. Now, we have from the sampling distributions theorem we have

_ 2 _ 2 B B 2 2
nx ny

nx ny
and hence T_7v
Z=—F———_ ~N(0,1)

[1 1

oy — + —

nx ny
giving us a test statistic z defined by o
r—-y

zZ =

+

/1 1
o+ — i
nx ny

which we can compare with the standard normal distribution; if z is a suprising observation from N(0, 1), and
lies outside of the critical region, then we can reject Hy. This procedure is the Two Sample Z-Test.

If ox = oy = o is unknown, we parallel the one sample T-test by replacing o by an estimate in the two sample
Z-test. First, we obtain an estimate of o by “pooling” the two samples; our estimate is the pooled estimate,
5%, defined by
(nx —1)s% + (ny —1)s3

nx +ny —2

=
which we then use to form the test statistic ¢ defined by
z—-y

1 1

spyf — +—
nx ny

t=

It can be shown that, if Hy is true then ¢ should be an observation from a Student-f distribution with nx +ny —2
degrees of freedom. Hence we can derive the critical values from the tables of the Student-¢ distribution.
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If ox # oy, but both parameters are known, we can use a similar approach to the one above to derive test
statistic z defined by

which has an N(0, 1) distribution if Hy is true.

Clearly, the choice of test depends on whether ox = oy or otherwise; we may test this hypothesis formally; to
test

Ho L0x =0y

Hy, :o0x #o0vy
we compute the test statistic
_ sk
q= s%,
which has a null distribution known as the Fisher or F distribution with (nx — 1,ny — 1) degrees of freedom;
this distribution can be denoted F(nx — 1,ny — 1), and its quantiles are tabulated. Hence we can look up the
0.025 and 0.975 quantiles of this distribution (the F' distribution is not symmetric), and hence define the critical
region; informally, if the test statistic g is very small or very large, then it is a suprising observation from the F'
distribution and hence we reject the hypothesis of equal variances.

5.5.6 Confidence Intervals

The procedures above allow us to test specific hypothesis about the parameters of probability models. We may
complement such tests by reporting a confidence interval, which is an interval in which we believe the “true”
parameter lies with high probability. Essentially, we use the sampling distribution to derive such intervals.

For example, in a one sample Z-test, we saw that
_ X -
a/vn

that is, that, for critical values £Cpg in the test at the 5

Z

~ N(0,1)

P[ -Cr<Z<Cgr]=P| -Cg<

X —

P < o ] —0.95
o/vn
Now, from tables we have Cg = 1.96, so re-arranging this expression we obtain

= ag ag
P| X-196— —
N Jn

from which we deduce a 95 % Confidence Interval for u based on the sample mean % of

< pu < X+196 ]:0.95

Z+1.96-—
n

7

We can derive other confidence intervals (corresponding to different significance levels in the equivalent tests)
by looking up the appropriate values of the critical values. The general approach for construction of confidence
interval for generic parameter 8 proceeds as follows. From the modelling assumptions, we derive a pivotal
quantity, that is, a statistic, Tpg, say, (usually the test statstic random variable) that depends on 6, but whose
sampling distribution is “parameter-free” (that is, does not depend on #). We then look up the critical values
Cr, and Cpg,, such that

P[Cr <Tpg<Chr, ]=1-a

where « is the significance level of the corresponding test. We then rearrange this expression to the form

Pla<b<ea]l=1-a
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where ¢; and ¢ are functions of Cgr, and Cg, respectively. Then a 1 — a % Confidence Interval for € is [e1, ¢2].

For the tests discussed in previous sections, the calculation of the form of the confidence intervals is straightfor-
ward: in each case, Cg, and Cpg, are the a/2 and 1 — a/2 quantiles of the distribution of the pivotal quantity.

Test Pivotal Quantity Tpg Distribution Parameter Confidence Interval
X—u _
ONE SAMPLE Z Z= N(0,1) [ £+ Cro/\n
a//n
ONE SAMPLE T T = X - St(n —1) i+ Crs/\/n
~s/vm g "
(n —1)s? (n—1)s2 (n—1)s?
NE SAMPLE = 2 2 :
ONE S d 9=""% Xn-1 d Cry Cri

ox = oy = ¢ known

TWO SAMPLE Z 7 Kmw) =¥V~ py) N(0,1) px —py  (F-9) %

ox = oy = o unknown

Cro \/
TWO SAMPLE T T= T T Stinx +ny —2) ux —py (Z—9)£Cg sp ”
)+ CR”

ox # oy known

(X —px)— Y —py)

\/7@

TWO SAMPLE 0= x/% Flnx —1 1) ox [ o o ]
o = nx —1l,ny — — ——
S2Y/0'%/ X Y U%/ CR2 SY CRl SY

TWO SAMPLE Z Z =

N(0,1) ux — py




