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CHEM. ENG. IT : PROBABILITY AND STATISTICS

Chapter 5. Statistical Analysis

Statistical analysis involves the informal/formal comparison of hypothetical or predicted behaviour with experi-
mental results. For example, we wish to be able to compare the predicted outcomes of an experiment, and the
corresponding probability model, with a data histogram. We will use both qualitative and quantitative approaches.

5.1 General Notation

Suppose that an experiment or trial is to be repeated n times under identical conditions. Let X; be the random
variable corresponding to the outcome of the ith trial, and suppose that each of the n random variables Xy, ..., X,
takes values in sample space X.

Often, assumptions can reasonably be made about the experimental conditions that lead to simplifications of the
joint probability model for the random variables X1, ..., X,,.

5.1.1 Modelling Assumptions

Essentially, the assumption of identical experimental conditions for each of the n trials implies that the random
variables corresponding to the trial outcomes are identically distributed, that is, in the usual notation, the
(marginal) mass/density function of X is given by

fxi(@z)=f(z) zeX

for i = 1,...,n, dropping the subscript on the function f. Another common assumption is that the random
variables X1, ..., X,, are independent. Thus X1, ..., X,, are usually treated as i.i.d. random variables.

In practice, it is commonly assumed that f takes one of the familiar forms (Binomial, Poisson, Exponential,
Normal etc.). Thus f depends on one or more parameters (6, A\, (i, o) etc.). The role of these parameters could
be indicated by re-writing the function f(z) as

fl@)=7f(z:0) =zeX (%)

where # here is a generic parameter, which may possibly be vector-valued. It is important here to specify precisely
the range of values which this parameter can take; in a Poisson model, we have parameter A > 0, and in a Normal
model, we have parameters u € R, ¢ € Rt. In the general case represented by (*) above, we have parameter
8 € © where O is some subset of R? and d = 1,2, say, is the number of parameters. We refer to © as the
parameter space. In practice, of course, parameter 6 is unknown during the experiment.

5.1.2 Objectives of a statistical analysis

After the experiment has been carried out, a sample of observed data will have been obtained. Suppose that
we have observed outcomes 1, ..., &, on the n trials (that is, we have observed X; = z1, Xo = 22, ..., X, = ),
termed a random sample. This sample can be used to answer qualitative and quantitative questions about the
nature of the experiment being carried out. The objectives of a statistical analysis can be summarized as follows.
We want to, for example,

(1) Describe and summarize the sample {z1,...,Z,} in such a way that allows a specific probability model to
be proposed.

(2) Deduce and make inference about the parameter(s) of the probability model 6.

(3) Test whether § is “significantly” larger/smaller /different from some specified value.

(4) Test whether the probability model encapsulated in the mass/density function f, and the other model
assumptions are adequate to explain the experimental results.

Objective (1) can be viewed as an exploratory data analysis exercise - it is crucially important to understand
whether a proposed probability distribution is suitable for modelling the observed data, otherwise the subsequent
formal inference procedures (estimation, hypothesis testing, model checking) cannot be used.
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5.2 Exploratory Data Analysis

Objectives : To summarize and describe the sample data {z1, ..., z, }, in order to propose a plausible probability
model.

The aim of this stage of analysis is first to produce summaries of the data in order to convey general trends or
features that are present in the sample. Secondly, in order to propose an appropriate probability model, we seek
to match features in the observed data to features of one of the conventional (Poisson, Exponential, Normal)
probability distributions that may be used in more formal analysis. The four principal features that we need to
assess in the data sample are

(1) The location, or the “average value” in the sample.

(2) The mode, or “most likely” value or interval observed in the sample.
(3) The scale or spread in the sample.

(4) The skewness or asymmetry in the sample.

These features of the sample are important because we can relate them directly to features of probability
distributions.

5.2.1 Numerical Summaries

1 n
Sample mean z == x;
i=1
1 n
Sample variance S? = - Z:(xl —z)?
e
S2 2 b d 2 — — 2
(52 or s* may be used) s n—lg(xl )
Sample Percentiles Suppose that the sample has been

sorted into ascending order and
re-labelled z(1) <... < z(y)
Then the pth percentile, 0 < p < 100,

is given by
z® = Z(x) where k is the nearest integer
to pn/100.
Median m =209, the 50th percentile
Lower quartile g5 = z2% the 25th percentile
Upper quartile g5 = 2™ the 75th percentile

Inter-quartile range  IQR = g5 — a5

Sample minimum Tmin = T(1)
Sample maximum Tmaz = T(n)
Sample range R =z —zq
1 n
o Z(% -)°
Sample skewness K == 52

Each of these summary statistics can be routinely computed from sample data using a calculator or statistical
computer package.
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5.2.2 Connection between sample statistics and probability models.

Consider the discrete probability distribution defined on the set of observed sample outcomes {z1, ...,z }, by
placing equal probability 1/n on each value, that is, the probability distribution specified by mass function
denoted f(,)

1
f(n)(.’l,') = E T € {.’L’l,...,.’l:n}.
Then the expectation of this probability distribution is given by

Ef(m)[X] :Z-’I:if(n)(mi)zzxi{%} = %sz =
i=1 =1

=1

that is, the sample mean. Similarly, the variance of this probability distribution is equal to sample variance,

1 n
Vars[X] = — 3 (2; - 7)* = 8%

=1

In fact, each of the summary statistics listed above can be viewed as a feature of the probability distribution
described by mass function f,).

Now, consider this probability distribution as n increases to infinity. Then the sample mass function f,) tends to a
function f which can be regarded as the “true” mass/density function, and the sample mean, variance, percentiles
etc. tend to the true mean, variance, percentiles of the distribution from which the data are generated.

In practice, of course, n is always finite, and thus the true distribution, true mean etc., cannot be known exactly.
Therefore, we approximate the true distribution by an appropriately chosen distribution (Poisson, Exponential,
Normal etc.) with parameters chosen to correspond to the observed sample properties.

5.2.3 Graphical Summaries

The most common graphical summary technique is the histogram. Typically, the sample space X is divided
into a number of subsets Xy, ..., Xg, and the frequency with which a data value in the sample is observed to lie
in subset A = 1,...,H is noted. This procedure leads to a set of counts n1,...,ng (where ny + ... + ng = n)
which are then plotted on a graph as a set of bars, where the hth bar has height nj and occupies the region of X
corresponding to Xj,.

The histogram again aims to approximate the “true” probability distribution generating the data by the observed
sample distribution. It illustrates graphically the concepts of location, mode, spread and skewness and general
shape features that have been recognised as important features of probability distributions.

5.2.4 Qutliers

Each of the summaries described above is used on the presumption that each of the observed data values z1, ..., Z,
is essentially an observation from the same probability distribution, and, because of this, each z; is treated as
equally important. Sometimes, however, for example due to slight variation in experimental conditions, one or
two values in the sample may be much larger or much smaller in magnitude than the remainder of the sample.
Such observations are termed outliers and must be treated with care, as they can distort the impression given
by some of the summary statistics. For example, the sample mean and variance are extremely sensitive to the
presence of outliers in the sample. Other summary statistics, for example those based on sample percentiles, are
less sensitive to outliers. Outliers can usually be identified by inspection of the raw data, or from careful plotting
of histograms.
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5.3 Estimation

It is often of interest to draw inference from data regarding the parameters of the proposed probability distribution;
recall that many aspects of the standard distributions studied are controlled by the distribution parameters.

EXAMPLE Failure times

Suppose that 20 identical components are tested; after installation at time z = 0, each component functions for
some random time until failure. This yields a sample of observed failure times z1, %2, ..., 29 Typically, we would
assume a probability model, such as the Exponential, for such data; this distribution has a single parameter A,
which is unknown in practice, and thus requires estimation. Subsequently, we may be interested in prediction for
a future component. For example, we may be interested in assessing the probability that an identical component
would function for longer than z*; this probability is given under the Exponential model by P[ X > z* | = e~
which we may only evaluate if we know, or have an estimate of A.

It is therefore important to find a simple and yet general technique for parameter estimation.

5.3.1 Maximum Likelihood Estimation

Maximum Likelihood Estimation is a systematic technique for estimating parameters in a probability model from
a data. Suppose a sample z1,...,%, has been obtained from a probability model specified by mass or density
function f(z;#) depending on parameter(s) € lying in parameter space ©. The maximum likelihood estimate
or m.l.e. is produced as follows;

STEP 1 Write down the likelihood function, L(#), where

n

L) =[] f(=:;6)

i=1
that is, the product of the n mass/density function terms (where the ith term is the mass/density function
evaluated at z;) viewed as a function of 6.

STEP 2 Take the natural log of the likelihood, and collect terms involving 6.

STEP 3 Find the value of 8 € O, 8, for which logL () is maximized, for example by differentiation. If 8 is a
single parameter, find # by solving

& ftogL(®)} =0

in the parameter space ©. If @ is vector-valued, say § = (61, ...,8,), then find 6 = (él, ...,éd) by simultaneously
solving the d equations given by

0
— {logL(8)} =0 j=1,..,d
g Uosl®)}=0
in parameter space ©.
Note that, if parameter space © is a bounded interval, then the maximum likelihood estimate may lie on the

boundary of ©.

STEP 4 Check that the estimate § obtained in STEP 3 truly corresponds to a maximum in the (log) likelihood
function by inspecting the second derivative of logL(#) with respect to 8. If

j% {logL(6)} <0

at @ = 6, then @ is confirmed as the m.Le. of 6 (other techniques may be used to verify that the likelihood is
maximized at ).

This procedure is a systematic way of producing parameter estimates from sample data and a probabililty model;
it can be shown that such an approach produces estimates that have good properties. After they have been
obtained, the estimates can be used to carry out prediction of behaviour for future samples.
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EXAMPLE A sample z1,...,%, is modelled by a Poisson distribution with parameter denoted A; hence

T

flz;0) = f(z; ) = %e_)‘ z=0,1,2,..

for some X\ > 0.

STEP 1 Calculate the likelihood function L()A). For A > 0,

n n T; T1+...4Tn
L) =1 f@sn =11 { A e‘*} = )‘7.(3—"A

z;!
i=1 i=1 B

STEP 2 Calculate the log-likelihood logL(\).

logL(\) = Z z;logh — nX — Z log(z;!)
i=1 =1

STEP 3 Differentiate logL(\) with respect to A, and equate the derivative to zero.

22;1 Zi 22;1 Zi
A

n

d

el ' —

o HogL(N)}
Thus the maximum likelihood estimate of A is A = Z

STEP 4 Check that the second derivative of logL()) with respect to A is negative at A = A

d?

5 {logL(N)} = —2;7;9” <0ath=A

5.4 Sampling Distributions
Maximum likelihood can be used systematically to produce estimates from sample data.

EXAMPLE : If a sample of data %1, ..., %, are believed to have a Normal distribution with parameters u and
o2, then the maximum likelihood estimates based on the sample are given by

N 1¢ _
b=z 02252252(%'—@2

i=1
If five samples of eight observations are collected, however, we might get five different sample means

T To T3 T4 T5 Tg T Tsg T
104 11.2 98 10.2 105 89 11.0 10.3 10.29
9.7 122 104 11.1 103 10.2 104 11.1 10.66
121 79 86 9.6 11.0 11.1 88 11.7 10.10
10.0 9.2 11.1 10.8 9.1 123 103 9.7 10.31
9.2 9.7 108 103 &9 101 9.7 104 9.89

and so the estimate fi of u is different each time.

We attempt to understand how Z varies by calculating the probability distribution of the corresponding

estimator, X.

The estimator X is a random variable, the value of which is unknown before the experiment is carried out.
As a random variable, X has a probability distribution, known as the sampling distribution. The form of this
distribution can often be calculated, and used to understand how Z varies.
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In the case where the sample data have a Normal distribution, the following theorem gives the sampling distri-
butions of the maximum likelihood estimators;

THEOREM
If X4, ..., X, are i.i.d. N(u,o?) random variables, then

(1) X ~ N (p,0?/n),

~_nS?  (n-1)s*

2
—:7&1)(_1,
o2 o2 "

(3) X and S? are statistically independent.

Proof
(1) First, we need to derive the probability distribution of the sum of independent Normal random variables. So
consider the case of two independent random variables X; and X5 where

X; ~ N(p1,01) X2 ~ N(ug,03)
We use the convolution theorem to derive the distribution of Y = X; + X5, namely
Y ~ N( + pa, 07 + 03)
Thus, if p; = e =, 01 = 09 = 0o,
Y = X1 + Xo ~ N(2u,20%) .

By induction, if Y is the sum of n such random variables, then

n
Y = ZXi ~ N(np,no?)

=1

Now, by the properties of the Normal distribution, if U ~ N(0,1) then V = aU + b ~ N (b, a?), so we have that
2
X:lYNN(ML).
n n

Thus the estimator X has a Normal distribution with parameters u and o2 /n.
Proofs of (2) and (3) - omitted.

This theorem tells us how we expect the sample mean and sample variance to behave. In particular, it tells us
that

n—1 ,
—o0

EX]=p E[S?]= E[s®] = o®

n
Interpretation : This theorem tells us how the sample mean and variance will behave if the original random
sample is assumed to come from a Normal distribution. For example, if we believe that X7,..., X0 are i.i.d
random variables from a Normal distribution with parameters g = 10.0 and ¢® = 25, then X has a Normal
distribution with parameters g = 10.0 and 0% = 25/10 = 2.5.

The theorem will be used to facilitate formal tests about model parameters. For example, given a sample of
experimental, we wish to answer specific questions about parameters in a proposed probability model.



